These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 28315484)
1. Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics. Bingaman JL; Messina KJ; Bevilacqua PC Methods; 2017 May; 120():125-134. PubMed ID: 28315484 [TBL] [Abstract][Full Text] [Related]
2. The kinetics of ribozyme cleavage: a tool to analyze RNA folding as a function of catalysis. Zingler N Methods Mol Biol; 2014; 1086():209-24. PubMed ID: 24136606 [TBL] [Abstract][Full Text] [Related]
3. A pH-dependent conformational change, rather than the chemical step, appears to be rate-limiting in the hammerhead ribozyme cleavage reaction. Murray JB; Dunham CM; Scott WG J Mol Biol; 2002 Jan; 315(2):121-30. PubMed ID: 11779233 [TBL] [Abstract][Full Text] [Related]
4. A general RNA-capping ribozyme retains stereochemistry during cap exchange. Zaher HS; Unrau PJ J Am Chem Soc; 2006 Oct; 128(42):13894-900. PubMed ID: 17044717 [TBL] [Abstract][Full Text] [Related]
6. On the Adaptability of the Chemical Reaction of Hairpin Ribozyme to High Pressures. Kumar N; Marx D J Phys Chem Lett; 2020 Nov; 11(21):9298-9303. PubMed ID: 33085887 [TBL] [Abstract][Full Text] [Related]
7. Productive folding to the native state by a group II intron ribozyme. Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013 [TBL] [Abstract][Full Text] [Related]
8. Optimizing the substrate specificity of a group I intron ribozyme. Zarrinkar PP; Sullenger BA Biochemistry; 1999 Mar; 38(11):3426-32. PubMed ID: 10079089 [TBL] [Abstract][Full Text] [Related]
10. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme. Zhang L; Xiao M; Lu C; Zhang Y RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515 [TBL] [Abstract][Full Text] [Related]
11. The structure and function of catalytic RNAs. Wu Q; Huang L; Zhang Y Sci China C Life Sci; 2009 Mar; 52(3):232-44. PubMed ID: 19294348 [TBL] [Abstract][Full Text] [Related]
12. Continuous monitoring of enzyme reactions on a microchip: application to catalytic RNA self-cleavage. Paxon TL; Brown TS; Lin HY; Brancato SJ; Roddy ES; Bevilacqua PC; Ewing AG Anal Chem; 2004 Dec; 76(23):6921-7. PubMed ID: 15571342 [TBL] [Abstract][Full Text] [Related]
13. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Rueda D; Wick K; McDowell SE; Walter NG Biochemistry; 2003 Aug; 42(33):9924-36. PubMed ID: 12924941 [TBL] [Abstract][Full Text] [Related]
14. Ribozymes: applications to functional analysis and gene discovery. Shiota M; Sano M; Miyagishi M; Taira K J Biochem; 2004 Aug; 136(2):133-47. PubMed ID: 15496583 [TBL] [Abstract][Full Text] [Related]
15. Pathways and kinetic barriers in mechanical unfolding and refolding of RNA and proteins. Hyeon C; Dima RI; Thirumalai D Structure; 2006 Nov; 14(11):1633-45. PubMed ID: 17098189 [TBL] [Abstract][Full Text] [Related]
16. A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme. Brooks KM; Hampel KJ Biochemistry; 2009 Jun; 48(24):5669-78. PubMed ID: 19449899 [TBL] [Abstract][Full Text] [Related]
20. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Bevilacqua PC; Sugimoto N; Turner DH Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]