BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28315524)

  • 1. A cellular mechanism for inverse effectiveness in multisensory integration.
    Truszkowski TL; Carrillo OA; Bleier J; Ramirez-Vizcarrondo CM; Felch DL; McQuillan M; Truszkowski CP; Khakhalin AS; Aizenman CD
    Elife; 2017 Mar; 6():. PubMed ID: 28315524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition.
    Felch DL; Khakhalin AS; Aizenman CD
    Elife; 2016 May; 5():. PubMed ID: 27218449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum.
    Hamodi AS; Liu Z; Pratt KG
    Elife; 2016 Nov; 5():. PubMed ID: 27879199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
    Khakhalin AS; Koren D; Gu J; Xu H; Aizenman CD
    Eur J Neurosci; 2014 Sep; 40(6):2948-62. PubMed ID: 24995793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisensory Integration Uses a Real-Time Unisensory-Multisensory Transform.
    Miller RL; Stein BE; Rowland BA
    J Neurosci; 2017 May; 37(20):5183-5194. PubMed ID: 28450539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and Dendrite-Specific Synaptic Properties of Midbrain Neurons Shape Multimodal Integration.
    Weigel S; Kuenzel T; Lischka K; Huang G; Luksch H
    J Neurosci; 2022 Mar; 42(13):2614-2630. PubMed ID: 35135851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of NMDA receptors for multimodal integration in the deep layers of the cat superior colliculus.
    Binns KE; Salt TE
    J Neurophysiol; 1996 Feb; 75(2):920-30. PubMed ID: 8714664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The principle of inverse effectiveness in multisensory integration: some statistical considerations.
    Holmes NP
    Brain Topogr; 2009 May; 21(3-4):168-76. PubMed ID: 19404728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative unisensory strength and timing predict their multisensory product.
    Miller RL; Pluta SR; Stein BE; Rowland BA
    J Neurosci; 2015 Apr; 35(13):5213-20. PubMed ID: 25834047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations to multisensory and unisensory integration by stimulus competition.
    Pluta SR; Rowland BA; Stanford TR; Stein BE
    J Neurophysiol; 2011 Dec; 106(6):3091-101. PubMed ID: 21957224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience.
    Busch SE; Khakhalin AS
    J Neurophysiol; 2019 Sep; 122(3):1084-1096. PubMed ID: 31291161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representation and integration of multiple sensory inputs in primate superior colliculus.
    Wallace MT; Wilkinson LK; Stein BE
    J Neurophysiol; 1996 Aug; 76(2):1246-66. PubMed ID: 8871234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisensory integration in the superior colliculus: a neural network model.
    Ursino M; Cuppini C; Magosso E; Serino A; di Pellegrino G
    J Comput Neurosci; 2009 Feb; 26(1):55-73. PubMed ID: 18478323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exploratory event-related potential study of multisensory integration in sensory over-responsive children.
    Brett-Green BA; Miller LJ; Schoen SA; Nielsen DM
    Brain Res; 2010 Mar; 1321():67-77. PubMed ID: 20097181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.
    Murray MM; Molholm S; Michel CM; Heslenfeld DJ; Ritter W; Javitt DC; Schroeder CE; Foxe JJ
    Cereb Cortex; 2005 Jul; 15(7):963-74. PubMed ID: 15537674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the operations underlying multisensory integration in the cat superior colliculus.
    Stanford TR; Quessy S; Stein BE
    J Neurosci; 2005 Jul; 25(28):6499-508. PubMed ID: 16014711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporo-nasal asymmetry in multisensory integration mediated by the Superior Colliculus.
    Bertini C; Leo F; Làdavas E
    Brain Res; 2008 Nov; 1242():37-44. PubMed ID: 18501340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.