BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28315524)

  • 21. Cross-Modal Competition: The Default Computation for Multisensory Processing.
    Yu L; Cuppini C; Xu J; Rowland BA; Stein BE
    J Neurosci; 2019 Feb; 39(8):1374-1385. PubMed ID: 30573648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An exploratory event-related potential study of multisensory integration in sensory over-responsive children.
    Brett-Green BA; Miller LJ; Schoen SA; Nielsen DM
    Brain Res; 2010 Mar; 1321():67-77. PubMed ID: 20097181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-modal exposure restores multisensory enhancement after hemianopia.
    Bean NL; Stein BE; Rowland BA
    Cereb Cortex; 2023 Nov; 33(22):11036-11046. PubMed ID: 37724427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the operations underlying multisensory integration in the cat superior colliculus.
    Stanford TR; Quessy S; Stein BE
    J Neurosci; 2005 Jul; 25(28):6499-508. PubMed ID: 16014711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.
    Murray MM; Molholm S; Michel CM; Heslenfeld DJ; Ritter W; Javitt DC; Schroeder CE; Foxe JJ
    Cereb Cortex; 2005 Jul; 15(7):963-74. PubMed ID: 15537674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Not just for bimodal neurons anymore: the contribution of unimodal neurons to cortical multisensory processing.
    Allman BL; Keniston LP; Meredith MA
    Brain Topogr; 2009 May; 21(3-4):157-67. PubMed ID: 19326204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of radial glial motility by visual experience.
    Tremblay M; Fugère V; Tsui J; Schohl A; Tavakoli A; Travençolo BA; Costa Lda F; Ruthazer ES
    J Neurosci; 2009 Nov; 29(45):14066-76. PubMed ID: 19906955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional topography of converging visual and auditory inputs to neurons in the rat superior colliculus.
    Skaliora I; Doubell TP; Holmes NP; Nodal FR; King AJ
    J Neurophysiol; 2004 Nov; 92(5):2933-46. PubMed ID: 15229210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporo-nasal asymmetry in multisensory integration mediated by the Superior Colliculus.
    Bertini C; Leo F; Làdavas E
    Brain Res; 2008 Nov; 1242():37-44. PubMed ID: 18501340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contributions of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum.
    Hickmott PW; Constantine-Paton M
    J Neurosci; 1993 Oct; 13(10):4339-53. PubMed ID: 7692012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing.
    Zahar Y; Reches A; Gutfreund Y
    J Neurophysiol; 2009 May; 101(5):2380-94. PubMed ID: 19261710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eye Can Hear Clearly Now: Inverse Effectiveness in Natural Audiovisual Speech Processing Relies on Long-Term Crossmodal Temporal Integration.
    Crosse MJ; Di Liberto GM; Lalor EC
    J Neurosci; 2016 Sep; 36(38):9888-95. PubMed ID: 27656026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The normal environment delays the development of multisensory integration.
    Xu J; Yu L; Rowland BA; Stein BE
    Sci Rep; 2017 Jul; 7(1):4772. PubMed ID: 28684852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global hyper-synchronous spontaneous activity in the developing optic tectum.
    Imaizumi K; Shih JY; Farris HE
    Sci Rep; 2013; 3():1552. PubMed ID: 23531884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deactivation of Association Cortices Disrupted the Congruence of Visual and Auditory Receptive Fields in Superior Colliculus Neurons.
    Xu J; Bi T; Keniston L; Zhang J; Zhou X; Yu L
    Cereb Cortex; 2017 Dec; 27(12):5568-5578. PubMed ID: 27797831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness.
    Senkowski D; Saint-Amour D; Höfle M; Foxe JJ
    Neuroimage; 2011 Jun; 56(4):2200-8. PubMed ID: 21497200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single retinal changing contrast (third) detector elicits NMDA receptor response and higher activity level of frog tectum neuron network.
    Kuras A; Baginskas A; Batuleviciene V; Lamanauskas N
    Exp Brain Res; 2007 May; 179(2):209-17. PubMed ID: 17136527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors.
    Lien CC; Mu Y; Vargas-Caballero M; Poo MM
    Nat Neurosci; 2006 Mar; 9(3):372-80. PubMed ID: 16474391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortex controls multisensory depression in superior colliculus.
    Jiang W; Stein BE
    J Neurophysiol; 2003 Oct; 90(4):2123-35. PubMed ID: 14534263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.