BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28315603)

  • 1. Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production.
    Tang J; Wang XC; Hu Y; Ngo HH; Li Y
    Bioresour Technol; 2017 Jun; 234():40-47. PubMed ID: 28315603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula.
    Tang J; Wang XC; Hu Y; Zhang Y; Li Y
    Bioresour Technol; 2017 Jan; 224():544-552. PubMed ID: 27939870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011.
    Ohkouchi Y; Inoue Y
    Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.
    Tang J; Wang X; Hu Y; Zhang Y; Li Y
    Waste Manag; 2016 Jun; 52():278-85. PubMed ID: 27040090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes.
    Zhang B; He PJ; Ye NF; Shao LM
    Bioresour Technol; 2008 Mar; 99(4):855-62. PubMed ID: 17376675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.
    Wu Y; Ma H; Zheng M; Wang K
    Bioresour Technol; 2015 Sep; 191():53-8. PubMed ID: 25983222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.
    Liang S; Gliniewicz K; Gerritsen AT; McDonald AG
    Bioresour Technol; 2016 May; 208():7-12. PubMed ID: 26913642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste.
    Yousuf A; Bastidas-Oyanedel JR; Schmidt JE
    Waste Manag; 2018 Jul; 77():516-521. PubMed ID: 29716759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp. strain.
    Yang X; Zhu M; Huang X; Lin CS; Wang J; Li S
    Bioresour Technol; 2015 Dec; 198():47-54. PubMed ID: 26363501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of lactic acid from food wastes.
    Kim KI; Kim WK; Seo DK; Yoo IS; Kim EK; Yoon HH
    Appl Biochem Biotechnol; 2003; 105 -108():637-47. PubMed ID: 12721443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations.
    Bonk F; Bastidas-Oyanedel JR; Yousef AF; Schmidt JE
    Bioresour Technol; 2017 Aug; 238():416-424. PubMed ID: 28458175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent.
    Choi G; Kim J; Lee C
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):10179-10191. PubMed ID: 27709285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste.
    Zheng J; Gao M; Wang Q; Wang J; Sun X; Chang Q; Tashiro Y
    Bioresour Technol; 2017 Feb; 225():159-164. PubMed ID: 27888733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term semi-continuous acidogenic fermentation for food wastes treatment: Effect of high organic loading rates at low hydraulic retention times and uncontrolled pH conditions.
    Yuan Q; Lou Y; Wu J; Sun Y
    Bioresour Technol; 2022 Aug; 357():127356. PubMed ID: 35605782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species.
    Wang Q; Wang X; Wang X; Ma H; Ren N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(10):1951-62. PubMed ID: 16194915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source.
    Flores-Albino B; Arias L; Gómez J; Castillo A; Gimeno M; Shirai K
    Bioprocess Biosyst Eng; 2012 Sep; 35(7):1193-200. PubMed ID: 22367529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.
    Liang S; McDonald AG; Coats ER
    Waste Manag; 2015 Nov; 45():51-6. PubMed ID: 25708409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorisation of fungal hydrolysates of exhausted sugar beet pulp for lactic acid production.
    Marzo C; Díaz AB; Caro I; Blandino A
    J Sci Food Agric; 2021 Aug; 101(10):4108-4117. PubMed ID: 33368320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.