These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28315824)

  • 1. Near-field investigation of the explosive dispersal of radioactive material based on a reconstructed spherical blast-wave flow.
    Hummel D; Ivan L
    J Environ Radioact; 2017 Jun; 172():30-42. PubMed ID: 28315824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MCREXS modelling approach for the simulation of a radiological dispersal device.
    Ivan L; Hummel D; Lebel L
    J Environ Radioact; 2018 Dec; 192():551-564. PubMed ID: 30142583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.
    Neuscamman S; Yu K
    Health Phys; 2016 May; 110(5):491-8. PubMed ID: 27023036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion of positron emitting radioactive gases in a complex urban building array: a comparison of dose modelling approaches.
    Gallacher DJ; Robins AG; Burt A; Chadwick S; Hayden P; Williams M
    J Radiol Prot; 2016 Dec; 36(4):746-784. PubMed ID: 27655037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation Modeling and Finite Cloud Effects for Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part II.
    Lebel L; Bourgouin P; Chouhan S; Ek N; Korolevych V; Malo A; Bensimon D; Erhardt L
    Health Phys; 2016 May; 110(5):518-25. PubMed ID: 27023038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.
    Sinclair LE; Fortin R; Buckle JL; Coyle MJ; Van Brabant RA; Harvey BJ; Seywerd HC; McCurdy MW
    Health Phys; 2016 May; 110(5):458-70. PubMed ID: 27023033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the calculation grid for atmospheric dispersion modelling.
    Van Thielen S; Turcanu C; Camps J; Keppens R
    J Environ Radioact; 2015 Apr; 142():103-12. PubMed ID: 25658472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sensitivity of Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part I.
    Lebel L; Bourgouin P; Chouhan S; Ek N; Korolevych V; Malo A; Bensimon D; Erhardt L
    Health Phys; 2016 May; 110(5):499-517. PubMed ID: 27023037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models.
    Liu Y; Li H; Sun S; Fang S
    J Environ Radioact; 2017 Sep; 175-176():94-104. PubMed ID: 28495593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of particle deposition to and removal from clothing, skin, and hair after a radioactive airborne dispersal event.
    Brambilla S; Nelson MA; Brown MJ
    J Environ Radioact; 2023 Dec; 270():107296. PubMed ID: 37734236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirty bomb source term characterization and downwind dispersion: Review of experimental evidence.
    Brambilla S; Nelson MA; Brown MJ
    J Environ Radioact; 2023 Jul; 263():107166. PubMed ID: 37059048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.
    Rishel JP; Keillor ME; Arrigo LM; Baciak JE; Detwiler RS; Kernan WJ; Kirkham RR; Milbrath BD; Seifert A; Seifert CE; Smart JE
    Health Phys; 2016 May; 110(5):526-32. PubMed ID: 27023039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of near field atmospheric dispersion around nuclear facilities using a Lorentzian distribution methodology.
    Hawkley G
    Health Phys; 2014 Dec; 107(6):514-22. PubMed ID: 25353236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes.
    Eslinger PW; Bowyer TW; Cameron IM; Hayes JC; Miley HS
    J Environ Radioact; 2015 Oct; 148():123-9. PubMed ID: 26151301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle Density Using Deposition Filters at the Full Scale RDD Experiments.
    Berg R; Gilhuly C; Korpach E; Ungar K
    Health Phys; 2016 May; 110(5):471-80. PubMed ID: 27023034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real Time in Situ Gamma Radiation Measurements of the Plume Evolution from the Full-Scale Radiological Dispersal Device Field Trials.
    Korpach E; Berg R; Erhardt L; Lebel L; Liu C
    Health Phys; 2016 May; 110(5):427-35. PubMed ID: 27023030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.
    Rakesh PT; Venkatesan R; Hedde T; Roubin P; Baskaran R; Venkatraman B
    J Environ Radioact; 2015 Jul; 145():30-39. PubMed ID: 25863323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rays as weapons.
    Vogel H
    Eur J Radiol; 2007 Aug; 63(2):167-77. PubMed ID: 17630244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.