These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28315944)

  • 1. Bimanual coordination patterns are stabilized under monitoring-pressure.
    Buchanan JJ; Park I; Chen J; Wright DL; Mehta RK
    Exp Brain Res; 2017 Jun; 235(6):1909-1918. PubMed ID: 28315944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expert monitoring and verbal feedback as sources of performance pressure.
    Buchanan JJ; Park I; Chen J; Mehta RK; McCulloch A; Rhee J; Wright DL
    Acta Psychol (Amst); 2018 May; 186():39-46. PubMed ID: 29698846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using visual and/or kinesthetic information to stabilize intrinsic bimanual coordination patterns is a function of movement frequency.
    Huang S; Van Syoc B; Yang R; Kuehn T; Smith D; Zhu Q
    Psychol Res; 2021 Mar; 85(2):865-878. PubMed ID: 31989241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of attention on phase transitions between bimanual coordination patterns: a behavioral and cost analysis in humans.
    Monno A; Chardenon A; Temprado JJ; Zanone PG; Laurent M
    Neurosci Lett; 2000 Apr; 283(2):93-6. PubMed ID: 10739883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of an exhausting muscle exercise on bimanual coordination stability and attentional demands.
    Murian A; Deschamps T; Bourbousson J; Temprado JJ
    Neurosci Lett; 2008 Feb; 432(1):64-8. PubMed ID: 18191895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay of attention and bimanual coordination dynamics.
    Monno A; Temprado JJ; Zanone PG; Laurent M
    Acta Psychol (Amst); 2002 Jun; 110(2-3):187-211. PubMed ID: 12102105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using scanning trials to assess intrinsic coordination dynamics.
    Kovacs AJ; Buchanan JJ; Shea CH
    Neurosci Lett; 2009 May; 455(3):162-7. PubMed ID: 19429113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The learning of 90° continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination.
    Kovacs AJ; Shea CH
    Acta Psychol (Amst); 2011 Mar; 136(3):311-20. PubMed ID: 21216384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic systems approach to the effects of aging on bimanual coordination.
    Temprado JJ; Vercruysse S; Salesse R; Berton E
    Gerontology; 2010; 56(3):335-44. PubMed ID: 19940462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intentional switching between patterns of bimanual coordination depends on the intrinsic dynamics of the patterns.
    Scholz JP; Kelso JA
    J Mot Behav; 1990 Mar; 22(1):98-124. PubMed ID: 15111283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shared dynamics of attentional cost and pattern stability.
    Zanone PG; Monno A; Temprado JJ; Laurent M
    Hum Mov Sci; 2001 Dec; 20(6):765-89. PubMed ID: 11792439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.
    Sakurada T; Ito K; Gomi H
    Eur J Neurosci; 2016 Jan; 43(1):120-30. PubMed ID: 26540267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatal activity during intentional switching depends on pattern stability.
    De Luca C; Jantzen KJ; Comani S; Bertollo M; Kelso JA
    J Neurosci; 2010 Mar; 30(9):3167-74. PubMed ID: 20203176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intentional Switching Between Bimanual Coordination Patterns.
    Wang C; Kennedy DM; Panzer S; Shea CH
    J Mot Behav; 2018; 50(5):538-556. PubMed ID: 29016257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covariation of attentional cost and stability provides further evidence for two routes to learning new coordination patterns.
    Zanone PG; Kostrubiec V; Albaret JM; Temprado JJ
    Acta Psychol (Amst); 2010 Feb; 133(2):107-18. PubMed ID: 19939341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficacy of the Microsoft Kinect
    Liddy JJ; Zelaznik HN; Huber JE; Rietdyk S; Claxton LJ; Samuel A; Haddad JM
    Behav Res Methods; 2017 Jun; 49(3):1030-1047. PubMed ID: 27351987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of force production and trial duration on bimanual performance and attentional demands in a rhythmic coordination task.
    Murian A; Deschamps T; Temprado JJ
    Motor Control; 2008 Jan; 12(1):21-37. PubMed ID: 18209247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling.
    Torre K; Delignières D
    Acta Psychol (Amst); 2008 Oct; 129(2):284-96. PubMed ID: 18799152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of performance trade-offs and dual-task interference in bimanual coordination: an ERP investigation.
    Matthews A; Garry MI; Martin F; Summers J
    Neurosci Lett; 2006 May; 400(1-2):172-6. PubMed ID: 16530954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of bimanual skill: the search for stable patterns of coordination.
    Robertson SD
    J Mot Behav; 2001 Jun; 33(2):114-26. PubMed ID: 11404208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.