These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 28316107)
21. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review. Kuttappan S; Mathew D; Nair MB Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767 [TBL] [Abstract][Full Text] [Related]
22. Cells, Scaffolds and Their Interactions in Myocardial Tissue Regeneration. Gorabi AM; Tafti SHA; Soleimani M; Panahi Y; Sahebkar A J Cell Biochem; 2017 Aug; 118(8):2454-2462. PubMed ID: 28128477 [TBL] [Abstract][Full Text] [Related]
23. Electrospun nanofibrous 3D scaffold for bone tissue engineering. Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712 [TBL] [Abstract][Full Text] [Related]
24. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. Lv Q; Nair L; Laurencin CT J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184 [TBL] [Abstract][Full Text] [Related]
25. Different methods of dentin processing for application in bone tissue engineering: A systematic review. Tabatabaei FS; Tatari S; Samadi R; Moharamzadeh K J Biomed Mater Res A; 2016 Oct; 104(10):2616-27. PubMed ID: 27256548 [TBL] [Abstract][Full Text] [Related]
26. Stem and progenitor cells: advancing bone tissue engineering. Tevlin R; Walmsley GG; Marecic O; Hu MS; Wan DC; Longaker MT Drug Deliv Transl Res; 2016 Apr; 6(2):159-73. PubMed ID: 25990836 [TBL] [Abstract][Full Text] [Related]
27. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. Klimek K; Przekora A; Pałka K; Ginalska G J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050 [TBL] [Abstract][Full Text] [Related]
28. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946 [TBL] [Abstract][Full Text] [Related]
29. Design strategies and applications of nacre-based biomaterials. Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766 [TBL] [Abstract][Full Text] [Related]
31. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. Krishnakumar GS; Sampath S; Muthusamy S; John MA Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():941-954. PubMed ID: 30606606 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. Baino F; Vitale-Brovarone C J Biomed Mater Res A; 2011 Jun; 97(4):514-35. PubMed ID: 21465645 [TBL] [Abstract][Full Text] [Related]
33. Nanostructured scaffolds for bone tissue engineering. Li X; Wang L; Fan Y; Feng Q; Cui FZ; Watari F J Biomed Mater Res A; 2013 Aug; 101(8):2424-35. PubMed ID: 23377988 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
36. Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix-A Comparative Analysis of Bioartificial Liver Microenvironments. Wang B; Jakus AE; Baptista PM; Soker S; Soto-Gutierrez A; Abecassis MM; Shah RN; Wertheim JA Stem Cells Transl Med; 2016 Sep; 5(9):1257-67. PubMed ID: 27421950 [TBL] [Abstract][Full Text] [Related]
37. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. Moshaverinia A; Chen C; Akiyama K; Xu X; Chee WW; Schricker SR; Shi S J Biomed Mater Res A; 2013 Nov; 101(11):3285-94. PubMed ID: 23983201 [TBL] [Abstract][Full Text] [Related]
38. Tissue engineering using pluripotent stem cells: multidisciplinary approaches to accelerate bench-to-bedside transition. Hunt NC; Lako M Regen Med; 2016 Sep; 11(6):495-8. PubMed ID: 27484404 [No Abstract] [Full Text] [Related]
39. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells. Leong MF; Lu HF; Lim TC; Du C; Ma NKL; Wan ACA Acta Biomater; 2016 Dec; 46():266-277. PubMed ID: 27667015 [TBL] [Abstract][Full Text] [Related]
40. [A review of research progress on biological effects about nanometer scaffold for bone tissue engineering]. Li B; He H; Liao X; Fan H; Zhang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Oct; 28(5):1035-9. PubMed ID: 22097278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]