These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 28316131)
1. Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae). Khan AM; Ashfaq M; Khan AA; Naseem MT; Mansoor S Insect Sci; 2018 Oct; 25(5):778-786. PubMed ID: 28316131 [TBL] [Abstract][Full Text] [Related]
2. Inoculation of Nicotiana tabacum with recombinant potato virus X induces RNA interference in the solenopsis mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Khan AM; Ashfaq M; Khan AA; Rasool A; Iqbal J; Mansoor S Biotechnol Lett; 2015 Oct; 37(10):2083-90. PubMed ID: 26087945 [TBL] [Abstract][Full Text] [Related]
3. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Singh S; Gupta M; Pandher S; Kaur G; Goel N; Rathore P Sci Rep; 2019 Sep; 9(1):13710. PubMed ID: 31548628 [TBL] [Abstract][Full Text] [Related]
4. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). Khan AM; Ashfaq M; Kiss Z; Khan AA; Mansoor S; Falk BW PLoS One; 2013; 8(9):e73657. PubMed ID: 24040013 [TBL] [Abstract][Full Text] [Related]
5. The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. Omar MAA; Ao Y; Li M; He K; Xu L; Tong H; Jiang M; Li F Insect Mol Biol; 2019 Aug; 28(4):550-567. PubMed ID: 30739379 [TBL] [Abstract][Full Text] [Related]
6. Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae), on cotton in India. Nagrare VS; Kranthi S; Biradar VK; Zade NN; Sangode V; Kakde G; Shukla RM; Shivare D; Khadi BM; Kranthi KR Bull Entomol Res; 2009 Oct; 99(5):537-41. PubMed ID: 19224663 [TBL] [Abstract][Full Text] [Related]
7. RNAi-based gene silencing in Phenacoccus solenopsis and its validation by in planta expression of a double-stranded RNA. Arya SK; Singh S; Upadhyay SK; Tiwari V; Saxena G; Verma PC Pest Manag Sci; 2021 Apr; 77(4):1796-1805. PubMed ID: 33270964 [TBL] [Abstract][Full Text] [Related]
8. Development of RNAi methods for Peregrinus maidis, the corn planthopper. Yao J; Rotenberg D; Afsharifar A; Barandoc-Alviar K; Whitfield AE PLoS One; 2013; 8(8):e70243. PubMed ID: 23950915 [TBL] [Abstract][Full Text] [Related]
9. The insect ecdysone receptor is a good potential target for RNAi-based pest control. Yu R; Xu X; Liang Y; Tian H; Pan Z; Jin S; Wang N; Zhang W Int J Biol Sci; 2014; 10(10):1171-80. PubMed ID: 25516715 [TBL] [Abstract][Full Text] [Related]
10. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Malik HJ; Raza A; Amin I; Scheffler JA; Scheffler BE; Brown JK; Mansoor S Sci Rep; 2016 Dec; 6():38469. PubMed ID: 27929123 [TBL] [Abstract][Full Text] [Related]
11. Reference Gene Selection in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) and Their Normalization Impact on Gene Expression in RNAi Studies. Singh S; Pandher S; Gupta M; Kaur G; Rathore P J Econ Entomol; 2019 Feb; 112(1):371-381. PubMed ID: 30329069 [TBL] [Abstract][Full Text] [Related]
12. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. Thakur N; Upadhyay SK; Verma PC; Chandrashekar K; Tuli R; Singh PK PLoS One; 2014; 9(3):e87235. PubMed ID: 24595215 [TBL] [Abstract][Full Text] [Related]
13. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. Eakteiman G; Moses-Koch R; Moshitzky P; Mestre-Rincon N; Vassão DG; Luck K; Sertchook R; Malka O; Morin S Insect Biochem Mol Biol; 2018 Sep; 100():10-21. PubMed ID: 29859812 [TBL] [Abstract][Full Text] [Related]
14. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300 [TBL] [Abstract][Full Text] [Related]
15. The OST-complex as target for RNAi-based pest control in Nilaparvata lugens. De Schutter K; Chen P; Shen Y; Van Damme EJM; Smagghe G Arch Insect Biochem Physiol; 2019 Jul; 101(3):e21555. PubMed ID: 31038785 [TBL] [Abstract][Full Text] [Related]
16. Plant-mediated RNAi silences midgut-expressed genes in congeneric lepidopteran insects in nature. Poreddy S; Li J; Baldwin IT BMC Plant Biol; 2017 Nov; 17(1):199. PubMed ID: 29132300 [TBL] [Abstract][Full Text] [Related]