BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28316164)

  • 1. [Advances in the research of signaling pathway in pathologic scar formation].
    Jin J; Ma B; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2017 Mar; 33(3):152-155. PubMed ID: 28316164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scarless wound healing: finding the right cells and signals.
    Leavitt T; Hu MS; Marshall CD; Barnes LA; Lorenz HP; Longaker MT
    Cell Tissue Res; 2016 Sep; 365(3):483-93. PubMed ID: 27256396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will stem cells bring hope to pathological skin scar treatment?
    Li Q; Zhang C; Fu X
    Cytotherapy; 2016 Aug; 18(8):943-956. PubMed ID: 27293205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.
    Ud-Din S; Volk SW; Bayat A
    Exp Dermatol; 2014 Sep; 23(9):615-9. PubMed ID: 24863070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring.
    Zonari A; Martins TM; Paula AC; Boeloni JN; Novikoff S; Marques AP; Correlo VM; Reis RL; Goes AM
    Acta Biomater; 2015 Apr; 17():170-81. PubMed ID: 25662911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transforming growth factor beta1/Smad3 signal transduction pathway and post-traumatic scar formation].
    Yu R; Cen Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Mar; 26(3):330-5. PubMed ID: 22506473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation.
    Profyris C; Tziotzios C; Do Vale I
    J Am Acad Dermatol; 2012 Jan; 66(1):1-10; quiz 11-2. PubMed ID: 22177631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear.
    Li P; Liu P; Xiong RP; Chen XY; Zhao Y; Lu WP; Liu X; Ning YL; Yang N; Zhou YG
    J Pathol; 2011 Apr; 223(5):659-71. PubMed ID: 21341267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Skin Wound and Scar Repair by Polymer Scaffolds.
    Zhou S; Wang Q; Huang A; Fan H; Yan S; Zhang Q
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Immunomodulatory Mechanisms of Mesenchymal Stem Cells-Derived Exosome on Immune Cells in Scar Formation.
    Zhao W; Zhang H; Liu R; Cui R
    Int J Nanomedicine; 2023; 18():3643-3662. PubMed ID: 37427367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The morphologic characteristics of scar tissues and the new clinicomorphologic classification of human skin scars].
    Shekhter AB; Guller AE
    Arkh Patol; 2008; 70(1):6-13. PubMed ID: 18368800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BMP‑7 suppresses excessive scar formation by activating the BMP‑7/Smad1/5/8 signaling pathway.
    Guo J; Lin Q; Shao Y; Rong L; Zhang D
    Mol Med Rep; 2017 Aug; 16(2):1957-1963. PubMed ID: 28627680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-animal models of wound healing in cutaneous repair: In silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin.
    Ud-Din S; Bayat A
    Wound Repair Regen; 2017 Apr; 25(2):164-176. PubMed ID: 28120405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis - Keloids and hypertrophic scars may be vascular disorders.
    Ogawa R; Akaishi S
    Med Hypotheses; 2016 Nov; 96():51-60. PubMed ID: 27959277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair.
    Liechty KW; Kim HB; Adzick NS; Crombleholme TM
    J Pediatr Surg; 2000 Jun; 35(6):866-72; discussion 872-3. PubMed ID: 10873028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and biochemical aspects of normal and abnormal wound healing: an overview.
    Diegelmann RF
    J Urol; 1997 Jan; 157(1):298-302. PubMed ID: 8976284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of topical topiramate in wound healing in mice.
    Jara CP; Bóbbo VCD; Carraro RS; de Araujo TMF; Lima MHM; Velloso LA; Araújo EP
    Arch Dermatol Res; 2018 May; 310(4):363-373. PubMed ID: 29476247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing.
    Fang S; Xu C; Zhang Y; Xue C; Yang C; Bi H; Qian X; Wu M; Ji K; Zhao Y; Wang Y; Liu H; Xing X
    Stem Cells Transl Med; 2016 Oct; 5(10):1425-1439. PubMed ID: 27388239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research advances on the effect of early intervention on post-traumatic scar formation].
    Zhao QN; Zhou YM; Ma YY; Han HH
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):697-701. PubMed ID: 34304414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.