These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28316353)

  • 1. Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death.
    Djabou ASM; Carvalho LJCB; Li QX; Niemenak N; Chen S
    Acta Physiol Plant; 2017; 39(4):91. PubMed ID: 28316353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.
    Xu J; Duan X; Yang J; Beeching JR; Zhang P
    Plant Physiol; 2013 Mar; 161(3):1517-28. PubMed ID: 23344905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration.
    Qin Y; Djabou AS; An F; Li K; Li Z; Yang L; Wang X; Chen S
    PLoS One; 2017; 12(3):e0174238. PubMed ID: 28339481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species turnover, phenolics metabolism, and some key gene expressions modulate postharvest physiological deterioration in cassava tubers.
    Wahengbam ED; Devi CP; Sharma SK; Roy SS; Maibam A; Dasgupta M; Luikham S; Chongtham T; Ningombam A; Bhupenchandra I; Singh LK; Devi YP; Thokchom S; Khaba CI; Singh NB; Rajashekar Y; Das S; Mohanty S; Sahoo MR
    Front Microbiol; 2023; 14():1148464. PubMed ID: 36925477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta crantz) during postharvest deterioration.
    Buschmann H; Reilly K; Rodriguez MX; Tohme J; Beeching JR
    J Agric Food Chem; 2000 Nov; 48(11):5522-9. PubMed ID: 11087513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin attenuates postharvest physiological deterioration of cassava storage roots.
    Ma Q; Zhang T; Zhang P; Wang ZY
    J Pineal Res; 2016 May; 60(4):424-34. PubMed ID: 26989849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending cassava root shelf life via reduction of reactive oxygen species production.
    Zidenga T; Leyva-Guerrero E; Moon H; Siritunga D; Sayre R
    Plant Physiol; 2012 Aug; 159(4):1396-407. PubMed ID: 22711743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Transcriptome Profiling of Cassava Tuberous Roots in Response to Postharvest Physiological Deterioration.
    Li R; Yuan S; Zhou Y; Wang S; Zhou Q; Ding Z; Wang Y; Yao Y; Liu J; Guo J
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data supporting the role of enzymes and polysaccharides during cassava postharvest physiological deterioration.
    Uarrota VG; Moresco R; Schmidt EC; Bouzon ZL; da Costa Nunes E; de Oliveira Neubert E; Peruch LA; Rocha M; Maraschin M
    Data Brief; 2016 Mar; 6():503-6. PubMed ID: 26900596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Physiological and Transcriptomic Analyses Reveal the Actions of Melatonin in the Delay of Postharvest Physiological Deterioration of Cassava.
    Hu W; Kong H; Guo Y; Zhang Y; Ding Z; Tie W; Yan Y; Huang Q; Peng M; Shi H; Guo A
    Front Plant Sci; 2016; 7():736. PubMed ID: 27303428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration.
    Uarrota VG; Moresco R; Coelho B; Nunes Eda C; Peruch LA; Neubert Ede O; Rocha M; Maraschin M
    Food Chem; 2014 Oct; 161():67-78. PubMed ID: 24837923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward better understanding of postharvest deterioration: biochemical changes in stored cassava (Manihot esculenta Crantz) roots.
    Uarrota VG; Nunes Eda C; Peruch LA; Neubert Ede O; Coelho B; Moresco R; Domínguez MG; Sánchez T; Meléndez JL; Dufour D; Ceballos H; Becerra Lopez-Lavalle LA; Hershey C; Rocha M; Maraschin M
    Food Sci Nutr; 2016 May; 4(3):409-22. PubMed ID: 27247771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic Acid Signaling in the Regulation of Postharvest Physiological Deterioration of Sliced Cassava Tuberous Roots.
    Yan Y; Zhao S; Ye X; Tian L; Shang S; Tie W; Zeng L; Zeng L; Yang J; Li M; Wang Y; Xie Z; Hu W
    J Agric Food Chem; 2022 Oct; 70(40):12830-12840. PubMed ID: 36183268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration.
    Beyene G; Chauhan RD; Gehan J; Siritunga D; Taylor N
    Plant Mol Biol; 2022 Jun; 109(3):283-299. PubMed ID: 32270429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.
    Liu S; Zainuddin IM; Vanderschuren H; Doughty J; Beeching JR
    Plant Mol Biol; 2017 May; 94(1-2):185-195. PubMed ID: 28315989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Physiological Analysis of Methyl Jasmonate in the Delay of Postharvest Physiological Deterioration and Cell Oxidative Damage in Cassava.
    Liu G; Li B; Li X; Wei Y; Liu D; Shi H
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31492031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of Class I α-Mannosidases to Cassava Postharvest Physiological Deterioration.
    An F; Baker MR; Qin Y; Chen S; Li QX
    ACS Omega; 2019 May; 4(5):8739-8746. PubMed ID: 31459963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.
    Uarrota VG; Moresco R; Schmidt EC; Bouzon ZL; Nunes Eda C; Neubert Ede O; Peruch LA; Rocha M; Maraschin M
    Food Chem; 2016 Apr; 197(Pt A):737-46. PubMed ID: 26617011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration.
    Vanderschuren H; Nyaboga E; Poon JS; Baerenfaller K; Grossmann J; Hirsch-Hoffmann M; Kirchgessner N; Nanni P; Gruissem W
    Plant Cell; 2014 May; 26(5):1913-1924. PubMed ID: 24876255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Analysis of bHLH Transcription Factors in Cassava Uncovers Their Roles in Postharvest Physiological Deterioration and Cyanogenic Glycosides Biosynthesis.
    An F; Xiao X; Chen T; Xue J; Luo X; Ou W; Li K; Cai J; Chen S
    Front Plant Sci; 2022; 13():901128. PubMed ID: 35789698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.