These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 28316655)
1. ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. Sun J; Jeliazkova N; Chupakin V; Golib-Dzib JF; Engkvist O; Carlsson L; Wegner J; Ceulemans H; Georgiev I; Jeliazkov V; Kochev N; Ashby TJ; Chen H J Cheminform; 2017; 9():17. PubMed ID: 28316655 [TBL] [Abstract][Full Text] [Related]
2. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules. Paricharak S; Cortés-Ciriano I; IJzerman AP; Malliavin TE; Bender A J Cheminform; 2015; 7():15. PubMed ID: 25926892 [TBL] [Abstract][Full Text] [Related]
3. Erratum to: ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. Sun J; Jeliazkova N; Chupakhin V; Golib-Dzib JF; Engkvist O; Carlsson L; Wegner J; Ceulemans H; Georgiev I; Jeliazkov V; Kochev N; Ashby TJ; Chen H J Cheminform; 2017 Jun; 9(1):41. PubMed ID: 29086166 [No Abstract] [Full Text] [Related]
4. A Consensus Compound/Bioactivity Dataset for Data-Driven Drug Design and Chemogenomics. Isigkeit L; Chaikuad A; Merk D Molecules; 2022 Apr; 27(8):. PubMed ID: 35458710 [TBL] [Abstract][Full Text] [Related]
5. Chemogenomics approaches for receptor deorphanization and extensions of the chemogenomics concept to phenotypic space. van der Horst E; Peironcely JE; van Westen GJ; van den Hoven OO; Galloway WR; Spring DR; Wegner JK; van Vlijmen HW; Ijzerman AP; Overington JP; Bender A Curr Top Med Chem; 2011; 11(15):1964-77. PubMed ID: 21470175 [TBL] [Abstract][Full Text] [Related]
6. Getting the most out of PubChem for virtual screening. Kim S Expert Opin Drug Discov; 2016 Sep; 11(9):843-55. PubMed ID: 27454129 [TBL] [Abstract][Full Text] [Related]
7. Papyrus: a large-scale curated dataset aimed at bioactivity predictions. Béquignon OJM; Bongers BJ; Jespers W; IJzerman AP; van der Water B; van Westen GJP J Cheminform; 2023 Jan; 15(1):3. PubMed ID: 36609528 [TBL] [Abstract][Full Text] [Related]
8. Industry-scale application and evaluation of deep learning for drug target prediction. Sturm N; Mayr A; Le Van T; Chupakhin V; Ceulemans H; Wegner J; Golib-Dzib JF; Jeliazkova N; Vandriessche Y; Böhm S; Cima V; Martinovic J; Greene N; Vander Aa T; Ashby TJ; Hochreiter S; Engkvist O; Klambauer G; Chen H J Cheminform; 2020 Apr; 12(1):26. PubMed ID: 33430964 [TBL] [Abstract][Full Text] [Related]
9. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides. Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477 [TBL] [Abstract][Full Text] [Related]
10. Target prediction utilising negative bioactivity data covering large chemical space. Mervin LH; Afzal AM; Drakakis G; Lewis R; Engkvist O; Bender A J Cheminform; 2015; 7():51. PubMed ID: 26500705 [TBL] [Abstract][Full Text] [Related]
11. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. Lenselink EB; Ten Dijke N; Bongers B; Papadatos G; van Vlijmen HWT; Kowalczyk W; IJzerman AP; van Westen GJP J Cheminform; 2017 Aug; 9(1):45. PubMed ID: 29086168 [TBL] [Abstract][Full Text] [Related]
12. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. Nidhi ; Glick M; Davies JW; Jenkins JL J Chem Inf Model; 2006; 46(3):1124-33. PubMed ID: 16711732 [TBL] [Abstract][Full Text] [Related]
13. Data Mining of Chemogenomics Data Using Bi-Modal PLS Methods and Chemical Interpretation for Molecular Design. Hasegawa K; Funatsu K Mol Inform; 2014 Dec; 33(11-12):749-56. PubMed ID: 27485421 [TBL] [Abstract][Full Text] [Related]
14. Are phylogenetic trees suitable for chemogenomics analyses of bioactivity data sets: the importance of shared active compounds and choosing a suitable data embedding method, as exemplified on Kinases. Paricharak S; Klenka T; Augustin M; Patel UA; Bender A J Cheminform; 2013 Dec; 5(1):49. PubMed ID: 24330772 [TBL] [Abstract][Full Text] [Related]
15. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Bender A; Young DW; Jenkins JL; Serrano M; Mikhailov D; Clemons PA; Davies JW Comb Chem High Throughput Screen; 2007 Sep; 10(8):719-31. PubMed ID: 18045083 [TBL] [Abstract][Full Text] [Related]
16. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data. Ribay K; Kim MT; Wang W; Pinolini D; Zhu H Front Environ Sci; 2016 Mar; 4():. PubMed ID: 27642585 [TBL] [Abstract][Full Text] [Related]
17. QuartataWeb: Integrated Chemical-Protein-Pathway Mapping for Polypharmacology and Chemogenomics. Li H; Pei F; Taylor DL; Bahar I Bioinformatics; 2020 Jun; 36(12):3935-3937. PubMed ID: 32221612 [TBL] [Abstract][Full Text] [Related]
18. Computational approaches in chemogenomics and chemical biology: current and future impact on drug discovery. Bajorath J Expert Opin Drug Discov; 2008 Dec; 3(12):1371-6. PubMed ID: 23506102 [TBL] [Abstract][Full Text] [Related]
19. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method. Wei Y; Li W; Du T; Hong Z; Lin J Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592 [TBL] [Abstract][Full Text] [Related]
20. Quality Issues with Public Domain Chemogenomics Data. Kalliokoski T; Kramer C; Vulpetti A Mol Inform; 2013 Dec; 32(11-12):898-905. PubMed ID: 27481136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]