BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28316878)

  • 1. Report on the National Eye Institute Audacious Goals Initiative: Replacement of Retinal Ganglion Cells from Endogenous Cell Sources.
    Vetter ML; Hitchcock PF;
    Transl Vis Sci Technol; 2017 Mar; 6(2):5. PubMed ID: 28316878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Report on the National Eye Institute Audacious Goals Initiative: Photoreceptor Regeneration and Integration Workshop.
    Gamm DM; Wong R;
    Transl Vis Sci Technol; 2015 Nov; 4(6):2. PubMed ID: 26629398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Report on the National Eye Institute Audacious Goals Initiative: Regenerating the Optic Nerve.
    Goldberg JL; Guido W;
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1271-5. PubMed ID: 26990163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special Commentary: Early Clinical Development of Cell Replacement Therapy: Considerations for the National Eye Institute Audacious Goals Initiative.
    Levin LA; Miller JW; Zack DJ; Friedlander M; Smith LEH
    Ophthalmology; 2017 Jul; 124(7):926-934. PubMed ID: 28365209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Report on the National Eye Institute's Audacious Goals Initiative: Creating a Cellular Environment for Neuroregeneration.
    Burns ME; Stevens B
    eNeuro; 2018; 5(2):. PubMed ID: 29766041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of PGS/PCL scaffolds in promoting differentiation of human embryonic stem cells into retinal ganglion cells.
    Behtaj S; Karamali F; Najafian S; Masaeli E; Esfahani MN; Rybachuk M
    Acta Biomater; 2021 May; 126():238-248. PubMed ID: 33771718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Update on the Status and Impact of the National Eye Institute Audacious Goals Initiative for Regenerative Medicine.
    Becker SM; Wright CB
    J Ocul Pharmacol Ther; 2021 Apr; 37(3):144-146. PubMed ID: 32877259
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry.
    Pereiro X; Fernández R; Barreda-Gómez G; Ruzafa N; Acera A; Araiz J; Astigarraga E; Vecino E
    Sci Rep; 2020 Nov; 10(1):20053. PubMed ID: 33208898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration.
    Zhang KY; Aguzzi EA; Johnson TV
    Cells; 2021 Jun; 10(6):. PubMed ID: 34200991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NEI Audacious Goals Initiative: Advancing the Frontier of Regenerative Medicine.
    Becker SM; Tumminia SJ; Chiang MF
    Transl Vis Sci Technol; 2021 Aug; 10(10):2. PubMed ID: 34383880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells - possibilities and current limitations.
    Freude KK; Saruhanian S; McCauley A; Paterson C; Odette M; Oostenink A; Hyttel P; Gillies M; Haukedal H; Kolko M
    World J Stem Cells; 2020 Oct; 12(10):1171-1183. PubMed ID: 33178399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges.
    Zhang J; Wu S; Jin ZB; Wang N
    Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glia-Neuron Interactions in the Retina Can Be Studied in Cocultures of Müller Cells and Retinal Ganglion Cells.
    Skytt DM; Toft-Kehler AK; Brændstrup CT; Cejvanovic S; Gurubaran IS; Bergersen LH; Kolko M
    Biomed Res Int; 2016; 2016():1087647. PubMed ID: 27429974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Generation and Regeneration of Retinal Ganglion Cells.
    Oliveira-Valença VM; Bosco A; Vetter ML; Silveira MS
    Front Cell Dev Biol; 2020; 8():581136. PubMed ID: 33043015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dexamethasone protects retinal ganglion cells but not Müller glia against hyperglycemia in vitro.
    Pereiro X; Ruzafa N; Acera A; Fonollosa A; Rodriguez FD; Vecino E
    PLoS One; 2018; 13(11):e0207913. PubMed ID: 30475883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma Rich in Growth Factors (PRGF) Increases the Number of Retinal Müller Glia in Culture but Not the Survival of Retinal Neurons.
    Ruzafa N; Pereiro X; Fonollosa A; Araiz J; Acera A; Vecino E
    Front Pharmacol; 2021; 12():606275. PubMed ID: 33767620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a Transplantable Population of Human iPSC-Derived Retinal Ganglion Cells.
    Rabesandratana O; Chaffiol A; Mialot A; Slembrouck-Brec A; Joffrois C; Nanteau C; Rodrigues A; Gagliardi G; Reichman S; Sahel JA; Chédotal A; Duebel J; Goureau O; Orieux G
    Front Cell Dev Biol; 2020; 8():585675. PubMed ID: 33195235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y
    Taguchi M; Shinozaki Y; Kashiwagi K; Shigetomi E; Robaye B; Koizumi S
    J Neurochem; 2016 Feb; 136(4):741-751. PubMed ID: 26560804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous polysialylated neural cell adhesion molecule enhances the survival of retinal ganglion cells.
    Murphy JA; Hartwick AT; Rutishauser U; Clarke DB
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):861-9. PubMed ID: 18757519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the Internal Limiting Membrane in Structural Engraftment and Topographic Spacing of Transplanted Human Stem Cell-Derived Retinal Ganglion Cells.
    Zhang KY; Tuffy C; Mertz JL; Quillen S; Wechsler L; Quigley HA; Zack DJ; Johnson TV
    Stem Cell Reports; 2021 Jan; 16(1):149-167. PubMed ID: 33382979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.