These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28317338)

  • 1. Release of calcium into the myofibrillar space in response to active shortening of striated muscle.
    Edman KAP; Caputo C
    Acta Physiol (Oxf); 2017 Oct; 221(2):142-148. PubMed ID: 28317338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depression of tetanic force induced by loaded shortening of frog muscle fibres.
    Edman KA; Caputo C; Lou F
    J Physiol; 1993 Jul; 466():535-52. PubMed ID: 8410705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The force-velocity relationship at negative loads (assisted shortening) studied in isolated, intact muscle fibres of the frog.
    Edman KA
    Acta Physiol (Oxf); 2014 Aug; 211(4):609-16. PubMed ID: 24888542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres.
    Edman KA
    Acta Physiol Scand; 1980 May; 109(1):15-26. PubMed ID: 6969530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Storage and release of mechanical energy by contracting frog muscle fibres.
    Cavagna GA; Heglund NC; Harry JD; Mantovani M
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres.
    Caputo C; Edman KA; Lou F; Sun YB
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):137-48. PubMed ID: 7965829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue vs. shortening-induced deactivation in striated muscle.
    Edman KA
    Acta Physiol Scand; 1996 Mar; 156(3):183-92. PubMed ID: 8729678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres.
    Edman KA; Reggiani C; Schiaffino S; te Kronnie G
    J Physiol; 1988 Jan; 395():679-94. PubMed ID: 2970539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch of contracting muscle fibres: evidence for regularly spaced active sites along the filaments and enhanced mechanical performance.
    Edman KA; Elzinga G; Noble MI
    Adv Exp Med Biol; 1984; 170():739-51. PubMed ID: 6611040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width.
    Edman KA
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):515-26. PubMed ID: 10457067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog.
    Edman KA
    J Physiol; 1975 Mar; 246(1):255-75. PubMed ID: 1079534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tension as a function of sarcomere length and velocity of shortening in single skeletal muscle fibres of the frog.
    Morgan DL; Claflin DR; Julian FJ
    J Physiol; 1991 Sep; 441():719-32. PubMed ID: 1816391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shortening induced deactivation of skinned fibres of frog and mouse striated muscle.
    Ekelund MC; Edman KA
    Acta Physiol Scand; 1982 Oct; 116(2):189-99. PubMed ID: 6820231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossbridge properties investigated by fast ramp stretching of activated frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B
    J Physiol; 2005 May; 565(Pt 1):261-8. PubMed ID: 15774512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile properties of isolated muscle spindles of the frog.
    Edman KA; Radzyukevich T; Kronborg B
    J Physiol; 2002 Jun; 541(Pt 3):905-16. PubMed ID: 12068049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.