These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28317341)

  • 1. Metal Doping to Enhance the Photoelectrochemical Behavior of LaFeO
    Díez-García MI; Gómez R
    ChemSusChem; 2017 Jun; 10(11):2457-2463. PubMed ID: 28317341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO
    Quiñonero J; Pastor FJ; Orts JM; Gómez R
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14150-14159. PubMed ID: 33728897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Copper Ferrite as a Novel Photocathode for Water Reduction: Improving Its Photoactivity by Electrochemical Pretreatment.
    Díez-García MI; Lana-Villarreal T; Gómez R
    ChemSusChem; 2016 Jun; 9(12):1504-12. PubMed ID: 27161046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV).
    Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreduction of water by using modified CuInS2 electrodes.
    Ikeda S; Nakamura T; Lee SM; Yagi T; Harada T; Minegishi T; Matsumura M
    ChemSusChem; 2011 Feb; 4(2):262-8. PubMed ID: 21328555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Role of Ag-Substitution in Enhancing the Photoelectrochemical Properties of LaFeO
    Sun X; Lan Z; Wang M; Geng Q; Lv X; Li M
    ChemSusChem; 2023 Oct; 16(20):e202300645. PubMed ID: 37438975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening.
    Saito R; Miseki Y; Nini W; Sayama K
    ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction.
    Prévot MS; Guijarro N; Sivula K
    ChemSusChem; 2015 Apr; 8(8):1359-67. PubMed ID: 25572288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical characterization of nanocrystalline thin-film Cu₂ZnSnS₄ photocathodes.
    Riha SC; Fredrick SJ; Sambur JB; Liu Y; Prieto AL; Parkinson BA
    ACS Appl Mater Interfaces; 2011 Jan; 3(1):58-66. PubMed ID: 21194208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO
    Chertkova VP; Iskortseva AN; Pazhetnov EM; Arkharova NA; Ryazantsev SV; Levin EE; Nikitina VA
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid.
    Monllor-Satoca D; Borja L; Rodes A; Gómez R; Salvador P
    Chemphyschem; 2006 Dec; 7(12):2540-51. PubMed ID: 17072939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of crystalline sputtered LaFeO
    Son MK; Seo H; Watanabe M; Shiratani M; Ishihara T
    Nanoscale; 2020 May; 12(17):9653-9660. PubMed ID: 32319489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.
    Jaramillo TF; Baeck SH; Kleiman-Shwarsctein A; Choi KS; Stucky GD; McFarland EW
    J Comb Chem; 2005; 7(2):264-71. PubMed ID: 15762755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting.
    Wang XD; Xu YF; Chen BX; Zhou N; Chen HY; Kuang DB; Su CY
    ChemSusChem; 2016 Oct; 9(20):3012-3018. PubMed ID: 27704701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.