These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 28317377)

  • 21. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
    Hinton TJ; Jallerat Q; Palchesko RN; Park JH; Grodzicki MS; Shue HJ; Ramadan MH; Hudson AR; Feinberg AW
    Sci Adv; 2015 Oct; 1(9):e1500758. PubMed ID: 26601312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanically Tunable Bioink for 3D Bioprinting of Human Cells.
    Forget A; Blaeser A; Miessmer F; Köpf M; Campos DFD; Voelcker NH; Blencowe A; Fischer H; Shastri VP
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28731220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toughening stretchable fibers via serial fracturing of a metallic core.
    Cooper CB; Joshipura ID; Parekh DP; Norkett J; Mailen R; Miller VM; Genzer J; Dickey MD
    Sci Adv; 2019 Feb; 5(2):eaat4600. PubMed ID: 30801003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multifunctional 3D printing of heterogeneous hydrogel structures.
    Nadernezhad A; Khani N; Skvortsov GA; Toprakhisar B; Bakirci E; Menceloglu Y; Unal S; Koc B
    Sci Rep; 2016 Sep; 6():33178. PubMed ID: 27630079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization.
    Michiels S; D'Hollander A; Lammens N; Kersemans M; Zhang G; Denis JM; Poels K; Sterpin E; Nuyts S; Haustermans K; Depuydt T
    Med Phys; 2016 Oct; 43(10):5392. PubMed ID: 27782703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using mesoscopic models to design strong and tough biomimetic polymer networks.
    Salib IG; Kolmakov GV; Bucior BJ; Peleg O; Kröger M; Savin T; Vogel V; Matyjaszewski K; Balazs AC
    Langmuir; 2011 Nov; 27(22):13796-805. PubMed ID: 21977962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
    Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H
    Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Titin (visco-) elasticity in skeletal muscle myofibrils.
    Herzog JA; Leonard TR; Jinha A; Herzog W
    Mol Cell Biomech; 2014 Mar; 11(1):1-17. PubMed ID: 25330621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong fiber-reinforced hydrogel.
    Agrawal A; Rahbar N; Calvert PD
    Acta Biomater; 2013 Feb; 9(2):5313-8. PubMed ID: 23107796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide.
    Liu S; Bastola AK; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.
    Basu A; Saha A; Goodman C; Shafranek RT; Nelson A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40898-40904. PubMed ID: 29091399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEVK domain of titin: an entropic spring with actin-binding properties.
    Linke WA; Kulke M; Li H; Fujita-Becker S; Neagoe C; Manstein DJ; Gautel M; Fernandez JM
    J Struct Biol; 2002; 137(1-2):194-205. PubMed ID: 12064946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional microfabrication through a multimode optical fiber.
    Morales-Delgado EE; Urio L; Conkey DB; Stasio N; Psaltis D; Moser C
    Opt Express; 2017 Mar; 25(6):7031-7045. PubMed ID: 28381044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heart failure decreases passive tension generation of rat diaphragm fibers.
    van Hees HW; Ottenheijm CA; Granzier HL; Dekhuijzen PN; Heunks LM
    Int J Cardiol; 2010 Jun; 141(3):275-83. PubMed ID: 19150150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-printing cell-laden Matrigel-agarose constructs.
    Fan R; Piou M; Darling E; Cormier D; Sun J; Wan J
    J Biomater Appl; 2016 Nov; 31(5):684-692. PubMed ID: 27638155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents.
    Marino M; Svergun DI; Kreplak L; Konarev PV; Maco B; Labeit D; Mayans O
    J Muscle Res Cell Motil; 2005; 26(6-8):355-65. PubMed ID: 16341830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The elastic I-band region of titin is assembled in a "modular" fashion by weakly interacting Ig-like domains.
    Politou AS; Gautel M; Improta S; Vangelista L; Pastore A
    J Mol Biol; 1996 Feb; 255(4):604-16. PubMed ID: 8568900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP.
    Pirlo RK; Wu P; Liu J; Ringeisen B
    Biotechnol Bioeng; 2012 Jan; 109(1):262-73. PubMed ID: 21830203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.