BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28317710)

  • 1. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds.
    Zhao Y; Jiang Y; Zheng B; Zhuang W; Zheng Y; Tian Y
    Food Chem; 2017 Aug; 228():167-176. PubMed ID: 28317710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology.
    Tian Y; Zhang Y; Zeng S; Zheng Y; Chen F; Guo Z; Lin Y; Zheng B
    Food Sci Technol Int; 2012 Oct; 18(5):477-88. PubMed ID: 23144241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans.
    Dong W; Cheng K; Hu R; Chu Z; Zhao J; Long Y
    Molecules; 2018 May; 23(5):. PubMed ID: 29751607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional group changes and chemical bond-dependent dielectric properties of lotus seed flour with microwave vacuum drying.
    Wang W; Zheng B; Tian Y
    J Food Sci; 2020 Dec; 85(12):4241-4248. PubMed ID: 33216372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries.
    Meda V; Gupta M; Opoku A
    J Microw Power Electromagn Energy; 2008; 42(4):4-12. PubMed ID: 19227059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.
    Zeng S; Chen B; Zeng H; Guo Z; Lu X; Zhang Y; Zheng B
    J Agric Food Chem; 2016 Mar; 64(12):2442-9. PubMed ID: 26912092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of microwave vacuum drying on the moisture migration, microstructure, and rehydration of sea cucumber.
    He X; Lin R; Cheng S; Wang S; Yuan L; Wang H; Wang H; Tan M
    J Food Sci; 2021 Jun; 86(6):2499-2512. PubMed ID: 34056720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
    Chayjan RA; Alaei B
    Acta Sci Pol Technol Aliment; 2016; 15(2):131-144. PubMed ID: 28071003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ultrasound-assisted osmotic dehydration on the drying kinetics, water state, and physicochemical properties of microwave vacuum-dried potato slices.
    Cheng X; Wang S; Shahid Iqbal M; Pan L; Hong L
    Ultrason Sonochem; 2023 Oct; 99():106557. PubMed ID: 37625257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.
    Tian Y; Zhao Y; Huang J; Zeng H; Zheng B
    Food Chem; 2016 Apr; 197(Pt A):714-22. PubMed ID: 26617008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rehydration behavior of microwave-dried amaranth (
    Mujaffar S; Lee Loy A
    Food Sci Nutr; 2017 May; 5(3):399-406. PubMed ID: 28572923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of microwave-vacuum drying on the physicochemical properties of a functional tomato snack bar.
    Gul MR; Ince AE; Ozel B; Uslu AK; Çetin M; Mentes D; Sumnu SG; Oztop MH
    J Sci Food Agric; 2024 Jan; 104(1):83-92. PubMed ID: 37566724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of a microwave assisted vacuum drying process applied to the granulated pharmaceutical drug hydrochlorthiazide.
    Berteli MN; Marsaioli AJ; Rodier E
    J Microw Power Electromagn Energy; 2007; 40(4):241-50. PubMed ID: 17847678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chlorogenic acid on the structural properties and digestibility of lotus seed starch during microwave gelatinization.
    Jiang X; Wang J; Ou Y; Zheng B
    Int J Biol Macromol; 2021 Nov; 191():474-482. PubMed ID: 34563574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of microwave power on kinetics and characteristics of microwave vacuum-dried longan (Dimocarpus longan Lour.) pulp.
    Su D; Zhang M; Wei Z; Tang X; Zhang R; Liu L; Deng Y
    Food Sci Technol Int; 2015 Mar; 21(2):124-32. PubMed ID: 24367023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying.
    Kantrong H; Tansakul A; Mittal GS
    J Food Sci Technol; 2014 Dec; 51(12):3594-608. PubMed ID: 25477627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of starch isolated from microwave heat treated lotus (Nelumbo nucifera) seed flour.
    Nawaz H; Shad MA; Saleem S; Khan MUA; Nishan U; Rasheed T; Bilal M; Iqbal HMN
    Int J Biol Macromol; 2018 Jul; 113():219-226. PubMed ID: 29476856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of granule size on the properties of lotus rhizome C-type starch.
    Lin L; Huang J; Zhao L; Wang J; Wang Z; Wei C
    Carbohydr Polym; 2015 Dec; 134():448-57. PubMed ID: 26428146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-vacuum drying of flax fiber for biocomposite production.
    Panigrahi S; Rana A; Meda V; Chang PR
    J Microw Power Electromagn Energy; 2009; 43(3):35-41. PubMed ID: 21384708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure.
    Guo Z; Zeng S; Lu X; Zhou M; Zheng M; Zheng B
    Food Chem; 2015 Nov; 186():223-30. PubMed ID: 25976814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.