These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28317716)
1. A nano-delivery system for bioactive ingredients using supercritical carbon dioxide and its release behaviors. Situ W; Song X; Luo S; Liang Y Food Chem; 2017 Aug; 228():219-225. PubMed ID: 28317716 [TBL] [Abstract][Full Text] [Related]
2. Recent Progress of Supercritical Carbon Dioxide in Producing Natural Nanomaterials. Xie M; Xu M; Chen X; Li Y Mini Rev Med Chem; 2019; 19(6):465-476. PubMed ID: 30324880 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation of lutein in liposomes using supercritical carbon dioxide. Zhao L; Temelli F; Curtis JM; Chen L Food Res Int; 2017 Oct; 100(Pt 1):168-179. PubMed ID: 28873676 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of proliposomes and self micro-emulsifying drug delivery system for improved oral bioavailability of nisoldipine. Nekkanti V; Rueda J; Wang Z; Betageri GV Int J Pharm; 2016 May; 505(1-2):79-88. PubMed ID: 27041124 [TBL] [Abstract][Full Text] [Related]
6. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process. Kadimi US; Balasubramanian DR; Ganni UR; Balaraman M; Govindarajulu V Nanomedicine; 2007 Dec; 3(4):273-80. PubMed ID: 17962084 [TBL] [Abstract][Full Text] [Related]
7. Engineering liposomes of leaf extract of seabuckthorn (SBT) by supercritical carbon dioxide (SCCO2)-mediated process. Ghatnur SM; Sonale RS; Balaraman M; Kadimi US J Liposome Res; 2012 Sep; 22(3):215-23. PubMed ID: 22397357 [TBL] [Abstract][Full Text] [Related]
9. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations. Xin Y; Qi Q; Mao Z; Zhan X Int J Pharm; 2017 Aug; 528(1-2):47-54. PubMed ID: 28559216 [TBL] [Abstract][Full Text] [Related]
10. Impregnation of mesoporous silica with poor aqueous soluble molecule using pressurized carbon dioxide: Is the solubility in the supercritical and subcritical phase a critical parameter? Koch N; Jennotte O; Grignard B; Lechanteur A; Evrard B Eur J Pharm Sci; 2020 Jul; 150():105332. PubMed ID: 32361178 [TBL] [Abstract][Full Text] [Related]
11. A supercritical fluid technology for liposome production and comparison with the film hydration method. Penoy N; Grignard B; Evrard B; Piel G Int J Pharm; 2021 Jan; 592():120093. PubMed ID: 33212171 [TBL] [Abstract][Full Text] [Related]
12. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Kamran M; Ahad A; Aqil M; Imam SS; Sultana Y; Ali A Int J Pharm; 2016 May; 505(1-2):147-58. PubMed ID: 27005906 [TBL] [Abstract][Full Text] [Related]
13. Development of a Novel Milling System Using Supercritical Carbon Dioxide for Improvement of Dissolution Characteristics of Water-Poorly Soluble Drugs. Fern JC; Nakamura H; Watano S Chem Pharm Bull (Tokyo); 2016; 64(12):1720-1725. PubMed ID: 27904081 [TBL] [Abstract][Full Text] [Related]
14. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. Lajunen T; Viitala L; Kontturi LS; Laaksonen T; Liang H; Vuorimaa-Laukkanen E; Viitala T; Le Guével X; Yliperttula M; Murtomäki L; Urtti A J Control Release; 2015 Apr; 203():85-98. PubMed ID: 25701610 [TBL] [Abstract][Full Text] [Related]
15. A bioavailability study on microbeads and nanoliposomes fabricated by dense carbon dioxide technologies using human-primary monocytes and flow cytometry assay. Ciaglia E; Montella F; Trucillo P; Ciardulli MC; Di Pietro P; Amodio G; Remondelli P; Vecchione C; Reverchon E; Maffulli N; Puca AA; Della Porta G Int J Pharm; 2019 Oct; 570():118686. PubMed ID: 31513874 [TBL] [Abstract][Full Text] [Related]
16. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Koushik K; Kompella UB Pharm Res; 2004 Mar; 21(3):524-35. PubMed ID: 15070105 [TBL] [Abstract][Full Text] [Related]
17. Nanosized Liposomes Containing Bile Salt: A Vesicular Nanocarrier for Enhancing Oral Bioavailability of BCS Class III Drug. Arafat M; Kirchhoefer C; Mikov M; Sarfraz M; Löbenberg R J Pharm Pharm Sci; 2017; 20(0):305-318. PubMed ID: 28885915 [TBL] [Abstract][Full Text] [Related]
18. Novel method of niosome generation using supercritical carbon dioxide part I: process mechanics. Wagner ME; Rizvi SS J Liposome Res; 2015; 25(4):334-46. PubMed ID: 25945392 [TBL] [Abstract][Full Text] [Related]
19. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review. Uddin MS; Sarker MZ; Ferdosh S; Akanda MJ; Easmin MS; Bt Shamsudin SH; Bin Yunus K J Sci Food Agric; 2015 May; 95(7):1385-94. PubMed ID: 25048690 [TBL] [Abstract][Full Text] [Related]
20. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]