These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 28317718)
1. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates. Huang GQ; Du YL; Xiao JX; Wang GY Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718 [TBL] [Abstract][Full Text] [Related]
2. Intestine-targeted delivery potency of the O-carboxymethyl chitosan-gum Arabic coacervate: Effects of coacervation acidity and possible mechanism. Huang GQ; Liu LN; Han XN; Xiao JX Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():423-429. PubMed ID: 28629036 [TBL] [Abstract][Full Text] [Related]
3. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization. Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264 [TBL] [Abstract][Full Text] [Related]
5. pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan - gum Arabic coacervates. Xiao JX; Zhu CP; Cheng LY; Yang J; Huang GQ Int J Biol Macromol; 2018 Oct; 117():315-322. PubMed ID: 29807084 [TBL] [Abstract][Full Text] [Related]
6. Composition and structure of whey protein/gum arabic coacervates. Weinbreck F; Tromp RH; de Kruif CG Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462 [TBL] [Abstract][Full Text] [Related]
7. Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification. Li Y; Zhang X; Sun N; Wang Y; Lin S Int J Biol Macromol; 2018 Dec; 120(Pt A):783-788. PubMed ID: 30171945 [TBL] [Abstract][Full Text] [Related]
8. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature. Anvari M; Pan CH; Yoon WB; Chung D Int J Biol Macromol; 2015 Aug; 79():894-902. PubMed ID: 26054661 [TBL] [Abstract][Full Text] [Related]
9. Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates. Niu F; Kou M; Fan J; Pan W; Feng ZJ; Su Y; Yang Y; Zhou W Food Chem; 2018 Sep; 260():1-6. PubMed ID: 29699649 [TBL] [Abstract][Full Text] [Related]
10. Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Espinosa-Andrews H; Enríquez-Ramírez KE; García-Márquez E; Ramírez-Santiago C; Lobato-Calleros C; Vernon-Carter J Carbohydr Polym; 2013 Jun; 95(1):161-6. PubMed ID: 23618253 [TBL] [Abstract][Full Text] [Related]
11. Diffusivity of whey protein and gum arabic in their coacervates. Weinbreck F; Rollema HS; Tromp RH; de Kruif CG Langmuir; 2004 Jul; 20(15):6389-95. PubMed ID: 15248727 [TBL] [Abstract][Full Text] [Related]
12. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties. Li Y; Zhang X; Zhao Y; Ding J; Lin S Food Res Int; 2018 May; 107():596-604. PubMed ID: 29580524 [TBL] [Abstract][Full Text] [Related]
13. Rheological interfacial properties of plant protein-arabic gum coacervates at the oil-water interface. Ducel V; Richard J; Popineau Y; Boury F Biomacromolecules; 2005; 6(2):790-6. PubMed ID: 15762643 [TBL] [Abstract][Full Text] [Related]
14. Complex coacervation of soybean protein isolate and chitosan. Huang GQ; Sun YT; Xiao JX; Yang J Food Chem; 2012 Nov; 135(2):534-9. PubMed ID: 22868125 [TBL] [Abstract][Full Text] [Related]
15. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. Xiao JX; Wang LH; Xu TC; Huang GQ Int J Biol Macromol; 2019 Feb; 123():436-445. PubMed ID: 30439438 [TBL] [Abstract][Full Text] [Related]
16. Effects of catechol grafting on chitosan-based coacervation and adhesion. Gu R; Guo J; Zhang S; Zhou J; Wang J; Cohen Stuart MA; Wang M Int J Biol Macromol; 2024 May; 267(Pt 2):131662. PubMed ID: 38636754 [TBL] [Abstract][Full Text] [Related]
17. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization. Gulão Eda S; de Souza CJ; Andrade CT; Garcia-Rojas EE Food Chem; 2016 Mar; 194():680-6. PubMed ID: 26471607 [TBL] [Abstract][Full Text] [Related]
18. Effect of cooling-heating rate on sol-gel transformation of fish gelatin-gum arabic complex coacervate phase. Anvari M; Chung D Int J Biol Macromol; 2016 Oct; 91():450-6. PubMed ID: 27246375 [TBL] [Abstract][Full Text] [Related]
19. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration. Schröder P; Cord-Landwehr S; Schönhoff M; Cramer C Biomacromolecules; 2023 Mar; 24(3):1194-1208. PubMed ID: 36779888 [TBL] [Abstract][Full Text] [Related]
20. Microencapsulation of oils using whey protein/gum Arabic coacervates. Weinbreck F; Minor M; de Kruif CG J Microencapsul; 2004 Sep; 21(6):667-79. PubMed ID: 15762323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]