These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28317884)

  • 21. Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent exchange.
    Gawlitza K; Wu C; Georgieva R; Wang D; Ansorge-Schumacher MB; von Klitzing R
    Phys Chem Chem Phys; 2012 Jul; 14(27):9594-600. PubMed ID: 22684227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enantioselective route to ketones and lactones from exocyclic allylic alcohols via metal and enzyme catalysis.
    Warner MC; Nagendiran A; Bogár K; Bäckvall JE
    Org Lett; 2012 Oct; 14(19):5094-7. PubMed ID: 23005603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational design of a lipase to accommodate catalysis of Baeyer-Villiger oxidation with hydrogen peroxide.
    Carlqvist P; Eklund R; Hult K; Brinck T
    J Mol Model; 2003 Jun; 9(3):164-71. PubMed ID: 12707799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B.
    Magnusson AO; Rotticci-Mulder JC; Santagostino A; Hult K
    Chembiochem; 2005 Jun; 6(6):1051-6. PubMed ID: 15883973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the plasticity of the alpha/beta hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties.
    Skjøt M; De Maria L; Chatterjee R; Svendsen A; Patkar SA; Ostergaard PR; Brask J
    Chembiochem; 2009 Feb; 10(3):520-7. PubMed ID: 19156649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis.
    Pätzold M; Siebenhaller S; Kara S; Liese A; Syldatk C; Holtmann D
    Trends Biotechnol; 2019 Sep; 37(9):943-959. PubMed ID: 31000203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the catalytic activity of Candida antarctica lipase B by circular permutation.
    Qian Z; Lutz S
    J Am Chem Soc; 2005 Oct; 127(39):13466-7. PubMed ID: 16190688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein engineering of stereoselective Baeyer-Villiger monooxygenases.
    Zhang ZG; Parra LP; Reetz MT
    Chemistry; 2012 Aug; 18(33):10160-72. PubMed ID: 22807240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate conformations set the rate of enzymatic acrylation by lipases.
    Syrén PO; Hult K
    Chembiochem; 2010 Apr; 11(6):802-10. PubMed ID: 20301160
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Sirén S; Dahlström KM; Puttreddy R; Rissanen K; Salminen TA; Scheinin M; Li XG; Liljeblad A
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CAL-B-Catalyzed deacylation of benzylic acetates: Effect of amines addition. Comparison of several approaches.
    Merabet-Khelassi M; Zaidi A; Aribi-Zouioueche L
    Enzyme Microb Technol; 2017 Dec; 107():1-6. PubMed ID: 28899481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A chemoenzymatic approach to the synthesis of enantiomerically pure (S)-3-hydroxy-gamma-butyrolactone.
    Lee SH; Park OJ; Uh HS
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):355-62. PubMed ID: 18446525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implication of substrate-assisted catalysis on improving lipase activity or enantioselectivity in organic solvents.
    Tsai SW; Chen CC; Yang HS; Ng IS; Chen TL
    Biochim Biophys Acta; 2006 Aug; 1764(8):1424-8. PubMed ID: 16919508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trends in lipase engineering for enhanced biocatalysis.
    Soni S
    Biotechnol Appl Biochem; 2022 Feb; 69(1):265-272. PubMed ID: 33438779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid.
    Schoffelen S; Lambermon MH; van Eldijk MB; van Hest JC
    Bioconjug Chem; 2008 Jun; 19(6):1127-31. PubMed ID: 18461981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic preparation of cis and trans-3-amino-4-hydroxytetrahydrofurans and cis-3-amino-4-hydroxypyrrolidines.
    Villar-Barro Á; Gotor V; Brieva R
    Bioorg Med Chem; 2014 Oct; 22(20):5563-8. PubMed ID: 24890654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent lipase-catalyzed hydrolytic approaches to pharmacologically important β- and γ-amino acids.
    Forró E; Fülöp F
    Curr Med Chem; 2012; 19(36):6178-87. PubMed ID: 23061625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters.
    Juhl PB; Doderer K; Hollmann F; Thum O; Pleiss J
    J Biotechnol; 2010 Dec; 150(4):474-80. PubMed ID: 20887757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.