These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28318144)

  • 1. Eco-Efficient Synthesis of Highly Porous CoCO
    Li HY; Tseng CM; Yang CH; Lee TC; Su CY; Hsieh CT; Chang JK
    ChemSusChem; 2017 Jun; 10(11):2464-2472. PubMed ID: 28318144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.
    Etacheri V; Hong CN; Pol VG
    Environ Sci Technol; 2015 Sep; 49(18):11191-8. PubMed ID: 26098219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.
    Xia Y; Xiao Z; Dou X; Huang H; Lu X; Yan R; Gan Y; Zhu W; Tu J; Zhang W; Tao X
    ACS Nano; 2013 Aug; 7(8):7083-92. PubMed ID: 23888901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.
    Fang Y; Lv Y; Che R; Wu H; Zhang X; Gu D; Zheng G; Zhao D
    J Am Chem Soc; 2013 Jan; 135(4):1524-30. PubMed ID: 23282081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical CO
    Yuan R; Wen H; Zeng L; Li X; Liu X; Zhang C
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes.
    Xue XY; Yuan S; Xing LL; Chen ZH; He B; Chen YJ
    Chem Commun (Camb); 2011 Apr; 47(16):4718-20. PubMed ID: 21412563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries.
    Zhang B; Yu Y; Liu Y; Huang ZD; He YB; Kim JK
    Nanoscale; 2013 Mar; 5(5):2100-6. PubMed ID: 23381093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers.
    Li W; Zeng L; Yang Z; Gu L; Wang J; Liu X; Cheng J; Yu Y
    Nanoscale; 2014 Jan; 6(2):693-8. PubMed ID: 24356437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ternary Cu₂SnS₃ cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity.
    Qu B; Li H; Zhang M; Mei L; Chen L; Wang Y; Li Q; Wang T
    Nanoscale; 2011 Oct; 3(10):4389-93. PubMed ID: 21927737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CoMn(2)O(4) spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries.
    Hu L; Zhong H; Zheng X; Huang Y; Zhang P; Chen Q
    Sci Rep; 2012; 2():986. PubMed ID: 23248749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance.
    Zhou Y; Lee J; Lee CW; Wu M; Yoon S
    ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ionic liquid)-Derived N-Doped Carbons with Hierarchical Porosity for Lithium- and Sodium-Ion Batteries.
    Alkarmo W; Ouhib F; Aqil A; Thomassin JM; Yuan J; Gong J; Vertruyen B; Detrembleur C; Jérôme C
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800545. PubMed ID: 30284334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agaric-like anodes of porous carbon decorated with MoO
    Hou C; Yang W; Xie X; Sun X; Wang J; Naik N; Pan D; Mai X; Guo Z; Dang F; Du W
    J Colloid Interface Sci; 2021 Aug; 596():396-407. PubMed ID: 33848745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2⋅nH2O nanocubes: a highly efficient anode material for lithium batteries.
    Hu L; Zhang P; Zhong H; Zheng X; Yan N; Chen Q
    Chemistry; 2012 Nov; 18(47):15049-56. PubMed ID: 23032561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.
    Smith K; Parrish R; Wei W; Liu Y; Li T; Hu YH; Xiong H
    ChemSusChem; 2016 Jun; 9(12):1397-402. PubMed ID: 27121419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.