These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 28318221)
1. Crystal Structure of a Homogeneous IgG-Fc Glycoform with the N-Glycan Designed to Maximize the Antibody Dependent Cellular Cytotoxicity. Chen CL; Hsu JC; Lin CW; Wang CH; Tsai MH; Wu CY; Wong CH; Ma C ACS Chem Biol; 2017 May; 12(5):1335-1345. PubMed ID: 28318221 [TBL] [Abstract][Full Text] [Related]
2. Modulating IgG effector function by Fc glycan engineering. Li T; DiLillo DJ; Bournazos S; Giddens JP; Ravetch JV; Wang LX Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3485-3490. PubMed ID: 28289219 [TBL] [Abstract][Full Text] [Related]
3. A common glycan structure on immunoglobulin G for enhancement of effector functions. Lin CW; Tsai MH; Li ST; Tsai TI; Chu KC; Liu YC; Lai MY; Wu CY; Tseng YC; Shivatare SS; Wang CH; Chao P; Wang SY; Shih HW; Zeng YF; You TH; Liao JY; Tu YC; Lin YS; Chuang HY; Chen CL; Tsai CS; Huang CC; Lin NH; Ma C; Wu CY; Wong CH Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10611-6. PubMed ID: 26253764 [TBL] [Abstract][Full Text] [Related]
4. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
5. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. Wada R; Matsui M; Kawasaki N MAbs; 2019; 11(2):350-372. PubMed ID: 30466347 [TBL] [Abstract][Full Text] [Related]
6. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
7. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058 [TBL] [Abstract][Full Text] [Related]
8. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Raju TS Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225 [TBL] [Abstract][Full Text] [Related]
9. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of a novel asymmetrically engineered Fc variant with improved affinity for FcγRs. Mimoto F; Kadono S; Katada H; Igawa T; Kamikawa T; Hattori K Mol Immunol; 2014 Mar; 58(1):132-8. PubMed ID: 24334029 [TBL] [Abstract][Full Text] [Related]
11. Impact of Fc N-glycan sialylation on IgG structure. Zhang Z; Shah B; Richardson J MAbs; 2019; 11(8):1381-1390. PubMed ID: 31411531 [TBL] [Abstract][Full Text] [Related]
13. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. Falconer DJ; Subedi GP; Marcella AM; Barb AW ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589 [TBL] [Abstract][Full Text] [Related]
14. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113 [TBL] [Abstract][Full Text] [Related]
15. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface. Teplyakov A; Zhao Y; Malia TJ; Obmolova G; Gilliland GL Mol Immunol; 2013 Nov; 56(1-2):131-9. PubMed ID: 23628091 [TBL] [Abstract][Full Text] [Related]
16. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Scallon BJ; Tam SH; McCarthy SG; Cai AN; Raju TS Mol Immunol; 2007 Mar; 44(7):1524-34. PubMed ID: 17045339 [TBL] [Abstract][Full Text] [Related]
17. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Harbison A; Fadda E Glycobiology; 2020 May; 30(6):407-414. PubMed ID: 31829411 [TBL] [Abstract][Full Text] [Related]
18. Effects of amino acid substitutions on the biological activity of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). Aoyama M; Tada M; Tatematsu KI; Hashii N; Sezutsu H; Ishii-Watabe A Biochem Biophys Res Commun; 2018 Sep; 503(4):2633-2638. PubMed ID: 30119885 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. Ahmed AA; Giddens J; Pincetic A; Lomino JV; Ravetch JV; Wang LX; Bjorkman PJ J Mol Biol; 2014 Sep; 426(18):3166-3179. PubMed ID: 25036289 [TBL] [Abstract][Full Text] [Related]
20. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]