These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28318245)

  • 21. Approach to multi-electron reduction beyond two-electron reduction of CO2.
    Kobayashi K; Tanaka K
    Phys Chem Chem Phys; 2014 Feb; 16(6):2240-50. PubMed ID: 24382494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interesting copper(ii)-assisted transformations of 2-acetylpyridine and 2-benzoylpyridine.
    Kitos AA; Efthymiou CG; Manos MJ; Tasiopoulos AJ; Nastopoulos V; Escuer A; Perlepes SP
    Dalton Trans; 2016 Jan; 45(3):1063-77. PubMed ID: 26659333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical water oxidation using a copper complex.
    Nestke S; Ronge E; Siewert I
    Dalton Trans; 2018 Aug; 47(31):10737-10741. PubMed ID: 29951673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of CO
    Teesdale JJ; Pistner AJ; Yap GP; Ma YZ; Lutterman DA; Rosenthal J
    Catal Today; 2014 Apr; 225():149-157. PubMed ID: 25395735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrocatalytic CO
    Nichols AW; Hooe SL; Kuehner JS; Dickie DA; Machan CW
    Inorg Chem; 2020 May; 59(9):5854-5864. PubMed ID: 32324404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands.
    Kobayashi K; Tanaka K
    Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactions of dicobalt octacarbonyl with dinucleating and mononucleating bis(imino)pyridine ligands.
    Hollingsworth RL; Beattie JW; Grass A; Martin PD; Groysman S; Lord RL
    Dalton Trans; 2018 Nov; 47(43):15353-15363. PubMed ID: 30280749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrocatalytic Reduction of CO
    Nichols AW; Chatterjee S; Sabat M; Machan CW
    Inorg Chem; 2018 Feb; 57(4):2111-2121. PubMed ID: 29384368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A local proton source in a [Mn(bpy-R)(CO)3Br]-type redox catalyst enables CO2 reduction even in the absence of Brønsted acids.
    Franco F; Cometto C; Ferrero Vallana F; Sordello F; Priola E; Minero C; Nervi C; Gobetto R
    Chem Commun (Camb); 2014 Dec; 50(93):14670-3. PubMed ID: 25316515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneous Aqueous CO
    Sinha S; Sonea A; Shen W; Hanson SS; Warren JJ
    Inorg Chem; 2019 Aug; 58(16):10454-10461. PubMed ID: 31343871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrocatalytic Proton Reduction by a Cobalt Complex Containing a Proton-Responsive Bis(alkylimdazole)methane Ligand: Involvement of a C-H Bond in H
    Ghosh P; de Vos S; Lutz M; Gloaguen F; Schollhammer P; Moret ME; Klein Gebbink RJM
    Chemistry; 2020 Oct; 26(55):12560-12569. PubMed ID: 32350932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sterically hindered Re- and Mn-CO
    Shipp JD; Carson H; Spall SJP; Parker SC; Chekulaev D; Jones N; Mel'nikov MY; Robertson CC; Meijer AJHM; Weinstein JA
    Dalton Trans; 2020 Apr; 49(14):4230-4243. PubMed ID: 32104876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes.
    Gholamkhass B; Mametsuka H; Koike K; Tanabe T; Furue M; Ishitani O
    Inorg Chem; 2005 Apr; 44(7):2326-36. PubMed ID: 15792468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activating a Low Overpotential CO2 Reduction Mechanism by a Strategic Ligand Modification on a Ruthenium Polypyridyl Catalyst.
    Johnson BA; Maji S; Agarwala H; White TA; Mijangos E; Ott S
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1825-9. PubMed ID: 26671836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H; Barman SK; Lloret F; Mukherjee R
    Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manganese Tricarbonyl Complexes with Asymmetric 2-Iminopyridine Ligands: Toward Decoupling Steric and Electronic Factors in Electrocatalytic CO
    Spall SJ; Keane T; Tory J; Cocker DC; Adams H; Fowler H; Meijer AJ; Hartl F; Weinstein JA
    Inorg Chem; 2016 Dec; 55(24):12568-12582. PubMed ID: 27989199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen Bond and Ligand Dissociation Dynamics in Fluoride Sensing of Re(I)-Polypyridyl Complex.
    Verma S; Aute S; Das A; Ghosh HN
    J Phys Chem B; 2015 Nov; 119(47):14952-8. PubMed ID: 26514688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.