These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28318250)

  • 21. Sequential co-production of biodiesel and bioethanol with spent coffee grounds.
    Kwon EE; Yi H; Jeon YJ
    Bioresour Technol; 2013 May; 136():475-80. PubMed ID: 23567719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds.
    Kim YS; Yeom SJ; Oh DK
    J Agric Food Chem; 2011 Nov; 59(21):11812-8. PubMed ID: 21919440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of brew strength, brew yield, and roast on the sensory quality of drip brewed coffee.
    Frost SC; Ristenpart WD; Guinard JX
    J Food Sci; 2020 Aug; 85(8):2530-2543. PubMed ID: 32652586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds.
    Nguyen QA; Cho EJ; Lee DS; Bae HJ
    Bioresour Technol; 2019 Jan; 272():209-216. PubMed ID: 30340187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Furan levels in coffee as influenced by species, roast degree, and brewing procedures.
    Arisseto AP; Vicente E; Ueno MS; Tfouni SA; Toledo MC
    J Agric Food Chem; 2011 Apr; 59(7):3118-24. PubMed ID: 21388135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of di- and trisaccharide mixtures by comprehensive two-dimensional liquid chromatography. Application to prebiotic oligosaccharides.
    Martín-Ortiz A; Ruiz-Matute AI; Sanz ML; Moreno FJ; Herrero M
    Anal Chim Acta; 2019 Jul; 1060():125-132. PubMed ID: 30902326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans.
    Lang R; Klade S; Beusch A; Dunkel A; Hofmann T
    J Agric Food Chem; 2015 Dec; 63(48):10492-9. PubMed ID: 26585544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends.
    Cagliani LR; Pellegrino G; Giugno G; Consonni R
    Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melatonin and serotonin profiles in beans of Coffea species.
    Ramakrishna A; Giridhar P; Sankar KU; Ravishankar GA
    J Pineal Res; 2012 May; 52(4):470-6. PubMed ID: 22017393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid content and composition of coffee brews prepared by different methods.
    Ratnayake WM; Hollywood R; O'Grady E; Stavric B
    Food Chem Toxicol; 1993 Apr; 31(4):263-9. PubMed ID: 8477916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spent coffee grounds as a versatile source of green energy.
    Kondamudi N; Mohapatra SK; Misra M
    J Agric Food Chem; 2008 Dec; 56(24):11757-60. PubMed ID: 19053356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies.
    Jaiswal R; Matei MF; Golon A; Witt M; Kuhnert N
    Food Funct; 2012 Sep; 3(9):976-84. PubMed ID: 22833076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonenzymatic Transglycosylation Reactions Induced by Roasting: New Insights from Models Mimicking Coffee Bean Regions with Distinct Polysaccharide Composition.
    Moreira AS; Simões J; Nunes FM; Evtuguin DV; Domingues P; Coimbra MA; Domingues MR
    J Agric Food Chem; 2016 Mar; 64(8):1831-40. PubMed ID: 26855252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tofu Whey Permeate Is an Efficient Source To Enzymatically Produce Prebiotic Fructooligosaccharides and Novel Fructosylated α-Galactosides.
    Corzo-Martínez M; García-Campos G; Montilla A; Moreno FJ
    J Agric Food Chem; 2016 Jun; 64(21):4346-52. PubMed ID: 27156348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of solvent relative permittivity on the dimerisation of organic molecules well below their solubility limits: examples from brewed coffee and beyond.
    Bradley ES; Hendon CH
    Food Funct; 2017 Mar; 8(3):1037-1042. PubMed ID: 28138676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of arabinogalactan oligosaccharides derived from arabinogalactan-protein of Coffea arabica instant coffee powder.
    Matulová M; Capek P; Kaneko S; Navarini L; Liverani FS
    Carbohydr Res; 2011 Jun; 346(8):1029-36. PubMed ID: 21497798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crude ethanolic extract from spent coffee grounds: Volatile and functional properties.
    Page JC; Arruda NP; Freitas SP
    Waste Manag; 2017 Nov; 69():463-469. PubMed ID: 28865904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components.
    Charles-Bernard M; Kraehenbuehl K; Rytz A; Roberts DD
    J Agric Food Chem; 2005 Jun; 53(11):4417-25. PubMed ID: 15913304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FTIR-ATR analysis of brewed coffee: effect of roasting conditions.
    Lyman DJ; Benck R; Dell S; Merle S; Murray-Wijelath J
    J Agric Food Chem; 2003 May; 51(11):3268-72. PubMed ID: 12744653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of Oligosaccharides in Korean Fermented Soybean Products by the Combination of Mass Spectrometry and Gas Chromatography.
    Song J; Lee H; Park I; Lee H
    J Agric Food Chem; 2023 Jan; 71(1):760-769. PubMed ID: 36574638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.