These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 28318376)

  • 61. Tissue Engineering of the Microvasculature.
    Tien J
    Compr Physiol; 2019 Jun; 9(3):1155-1212. PubMed ID: 31187896
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mimicking and surpassing the xenograft model with cancer-on-chip technology.
    Komen J; van Neerven SM; van den Berg A; Vermeulen L; van der Meer AD
    EBioMedicine; 2021 Apr; 66():103303. PubMed ID: 33773183
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
    Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN
    Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chapter 8. Proteomic mapping of the vascular endothelium in vivo for vascular targeting.
    Griffin NM; Schnitzer JE
    Methods Enzymol; 2008; 445():177-208. PubMed ID: 19022060
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microfabricated blood vessels undergo neoangiogenesis.
    DiVito KA; Daniele MA; Roberts SA; Ligler FS; Adams AA
    Biomaterials; 2017 Sep; 138():142-152. PubMed ID: 28570946
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Application of microfluidic technology in cancer research and therapy.
    Azadi S; Aboulkheyr Es H; Kulasinghe A; Bordhan P; Ebrahimi Warkiani M
    Adv Clin Chem; 2020; 99():193-235. PubMed ID: 32951637
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
    Wang YI; Abaci HE; Shuler ML
    Biotechnol Bioeng; 2017 Jan; 114(1):184-194. PubMed ID: 27399645
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Engineering Organ-on-a-Chip Systems for Vascular Diseases.
    Shakeri A; Wang Y; Zhao Y; Landau S; Perera K; Lee J; Radisic M
    Arterioscler Thromb Vasc Biol; 2023 Dec; 43(12):2241-2255. PubMed ID: 37823265
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Endothelial cells of tumor vessels: abnormal but not absent.
    McDonald DM; Foss AJ
    Cancer Metastasis Rev; 2000; 19(1-2):109-20. PubMed ID: 11191049
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A microfluidic bubble perfusion device for brain slice culture.
    Saleheen A; Acharyya D; Prosser RA; Baker CA
    Anal Methods; 2021 Mar; 13(11):1364-1373. PubMed ID: 33644791
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip.
    Jeong S; Seo JH; Garud KS; Park SW; Lee MY
    Biosens Bioelectron; 2021 Jul; 183():113197. PubMed ID: 33819903
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Endothelial cell plasticity at the single-cell level.
    Pasut A; Becker LM; Cuypers A; Carmeliet P
    Angiogenesis; 2021 May; 24(2):311-326. PubMed ID: 34061284
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis.
    Song JW; Bazou D; Munn LL
    Integr Biol (Camb); 2012 Aug; 4(8):857-62. PubMed ID: 22673771
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Endothelial Cell Metabolism in Health and Disease.
    Rohlenova K; Veys K; Miranda-Santos I; De Bock K; Carmeliet P
    Trends Cell Biol; 2018 Mar; 28(3):224-236. PubMed ID: 29153487
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of microfluidic devices in studies of thrombosis and hemostasis.
    Zhang C; Neelamegham S
    Platelets; 2017 Jul; 28(5):434-440. PubMed ID: 28580870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.