These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28318402)

  • 1. Ipsilateral Scapular Cutaneous Anchor System: An alternative for the harness in body-powered upper-limb prostheses.
    Hichert M; Plettenburg DH
    Prosthet Orthot Int; 2018 Feb; 42(1):101-106. PubMed ID: 28318402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception and control of low cable operation forces in voluntary closing body-powered upper-limb prostheses.
    Hichert M; Abbink DA; Vardy AN; van der Sluis CK; Janssen WGM; Brouwers MAH; Plettenburg DH
    PLoS One; 2019; 14(11):e0225263. PubMed ID: 31756222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency.
    Hichert M; Vardy AN; Plettenburg D
    Prosthet Orthot Int; 2018 Feb; 42(1):84-92. PubMed ID: 28621577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.
    Hichert M; Abbink DA; Kyberd PJ; Plettenburg DH
    PLoS One; 2017; 12(1):e0169996. PubMed ID: 28099454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of transradial body-powered prostheses using a robotic simulator.
    Ayub R; Villarreal D; Gregg RD; Gao F
    Prosthet Orthot Int; 2017 Apr; 41(2):194-200. PubMed ID: 27469105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental apparatus to simulate body-powered prosthetic usage: Development and preliminary evaluation.
    Gao F; Rodriguez J; Kapp S
    Prosthet Orthot Int; 2016 Jun; 40(3):404-8. PubMed ID: 25820641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.
    LeBlanc M
    Assist Technol; 1990; 2(3):101-7. PubMed ID: 10149042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the Force-Motion Tradeoff in Body-Powered Transmission Design.
    Abbott ME; Stuart HS
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3064-3074. PubMed ID: 37471179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to use a body-powered prosthesis: changes in functionality and kinematics.
    Huinink LH; Bouwsema H; Plettenburg DH; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2016 Oct; 13(1):90. PubMed ID: 27716254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Getting a Grip on the Impact of Incidental Feedback From Body-Powered and Myoelectric Prostheses.
    Gonzalez MA; Lee C; Kang J; Gillespie RB; Gates DH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1905-1912. PubMed ID: 34516377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Reachable Workspace and User Control Over Prehensor Aperture for a Body-Powered Prosthesis.
    Chadwell A; Kenney L; Howard D; Ssekitoleko RT; Nakandi BT; Head J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):2005-2014. PubMed ID: 32746324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of voluntary opening and voluntary closing prosthetic terminal device.
    Sensinger JW; Lipsey J; Thomas A; Turner K
    J Rehabil Res Dev; 2015; 52(1):63-75. PubMed ID: 26186081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks.
    Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA
    J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is body powered operation of upper limb prostheses feasible for young limb deficient children?
    Shaperman J; Leblanc M; Setoguchi Y; McNeal DR
    Prosthet Orthot Int; 1995 Dec; 19(3):165-75. PubMed ID: 8927528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential experiences of embodiment between body-powered and myoelectric prosthesis users.
    Engdahl SM; Meehan SK; Gates DH
    Sci Rep; 2020 Sep; 10(1):15471. PubMed ID: 32963290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a 3D-printed hand prosthesis featuring articulated bio-inspired fingers.
    Cuellar JS; Plettenburg D; Zadpoor AA; Breedveld P; Smit G
    Proc Inst Mech Eng H; 2021 Mar; 235(3):336-345. PubMed ID: 33292076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards assessing the preferred usage features of upper limb prostheses: most important items regarding prosthesis use in people with major unilateral upper limb absence-a Dutch national survey.
    Kerver N; van der Sluis CK; van Twillert S; Krabbe PFM
    Disabil Rehabil; 2022 Dec; 44(24):7554-7565. PubMed ID: 34813394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.