BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 28318581)

  • 21. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria.
    Mani-López E; Palou E; López-Malo A
    J Dairy Sci; 2014 May; 97(5):2578-90. PubMed ID: 24745665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New advances in exopolysaccharides production of Streptococcus thermophilus.
    Cui Y; Jiang X; Hao M; Qu X; Hu T
    Arch Microbiol; 2017 Aug; 199(6):799-809. PubMed ID: 28357474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification and characterization.
    Ren W; Xia Y; Wang G; Zhang H; Zhu S; Ai L
    Int J Biol Macromol; 2016 May; 86():402-7. PubMed ID: 26820354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk.
    Svensson M; Waak E; Svensson U; Rådström P
    Appl Environ Microbiol; 2005 Oct; 71(10):6398-400. PubMed ID: 16204566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UDP-N-acetylglucosamine 4-epimerase activity indicates the presence of N-acetylgalactosamine in exopolysaccharides of Streptococcus thermophilus strains.
    Degeest B; Vaningelgem F; Laws AP; De Vuyst L
    Appl Environ Microbiol; 2001 Sep; 67(9):3976-84. PubMed ID: 11525994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.
    Gezginc Y; Topcal F; Comertpay S; Akyol I
    J Dairy Sci; 2015 Mar; 98(3):1426-34. PubMed ID: 25547312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1.
    Makino S; Ikegami S; Kano H; Sashihara T; Sugano H; Horiuchi H; Saito T; Oda M
    J Dairy Sci; 2006 Aug; 89(8):2873-81. PubMed ID: 16840603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Lactobacillus helveticus exopolysaccharides molecular weight on yogurt gel properties and its internal mechanism.
    Zhang K; Tang H; Farid MS; Xiang F; Li B
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):130006. PubMed ID: 38331067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of heat impact in reconstituted skim milk on the properties of yoghurt fermented by ropy or non-ropy starter cultures.
    Lorenzen PC; Ebert Y; Clawin-Rädecker I; Schlimme E
    Nahrung; 2003 Oct; 47(5):349-53. PubMed ID: 14609093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between EPS-producing Streptococcus thermophilus strains in mixed yoghurt cultures.
    Folkenberg DM; Dejmek P; Skriver A; Ipsen R
    J Dairy Res; 2006 Nov; 73(4):385-93. PubMed ID: 16834816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Exopolysaccharide Produced by
    Kanamarlapudi SLRK; Muddada S
    Biomed Res Int; 2017; 2017():4201809. PubMed ID: 28815181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transformation kinetics of fermented milk using Lactobacillus casei (Lc1) and Streptococcus thermophilus: comparison of results with other Inocula.
    Muñoz SV; Guerrero FQ; Torres MG; Castro MD; Talavera RR
    J Dairy Res; 2017 Feb; 84(1):102-108. PubMed ID: 27821208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk.
    Hu T; Zhang Y; Cui Y; Zhao C; Jiang X; Zhu X; Wang Y; Qu X
    Arch Microbiol; 2018 May; 200(4):567-580. PubMed ID: 29236144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation.
    Xu Z; Guo Q; Zhang H; Xiong Z; Zhang X; Ai L
    Int J Biol Macromol; 2021 May; 178():263-269. PubMed ID: 33639187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12.
    Lemoine J; Chirat F; Wieruszeski JM; Strecker G; Favre N; Neeser JR
    Appl Environ Microbiol; 1997 Sep; 63(9):3512-8. PubMed ID: 9293002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capsular Exopolysaccharides from Two
    Nachtigall C; Surber G; Wefers D; Vogel C; Rohm H; Jaros D
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766125
    [No Abstract]   [Full Text] [Related]  

  • 37. Production and molecular structure of heteropolysaccharides from two lactic acid bacteria.
    Nachtigall C; Surber G; Herbi F; Wefers D; Jaros D; Rohm H
    Carbohydr Polym; 2020 May; 236():116019. PubMed ID: 32172839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitivity of capsular-producing Streptococcus thermophilus strains to bacteriophage adsorption.
    Rodríguez C; Van der Meulen R; Vaningelgem F; Font de Valdez G; Raya R; De Vuyst L; Mozzi F
    Lett Appl Microbiol; 2008 Apr; 46(4):462-8. PubMed ID: 18298456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production and monomer composition of exopolysaccharides by yogurt starter cultures.
    Frengova GI; Simova ED; Beshkova DM; Simov ZI
    Can J Microbiol; 2000 Dec; 46(12):1123-7. PubMed ID: 11142402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure, physicochemical characterization, and antioxidant activity of the highly arabinose-branched exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6.
    Zhou Y; Cui Y; Suo C; Wang Q; Qu X
    Int J Biol Macromol; 2021 Dec; 192():716-727. PubMed ID: 34655584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.