These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28318696)

  • 21. [Relationship between groundwater level in riparian wetlands and water level in the river].
    Xu HS; Zhao TQ; Meng HQ; Xu ZX; Ma CH
    Huan Jing Ke Xue; 2011 Feb; 32(2):362-7. PubMed ID: 21528555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model to integrate urban river thermal cooling in river restoration.
    Abdi R; Endreny T; Nowak D
    J Environ Manage; 2020 Mar; 258():110023. PubMed ID: 31929063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.
    Mundy E; Gleeson T; Roberts M; Baraer M; McKenzie JM
    Ground Water; 2017 Mar; 55(2):160-170. PubMed ID: 27576019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining hydrological investigations and radium isotopes to understand the environmental effect of groundwater discharge to a typical urbanized estuary in China.
    Xiao K; Li G; Li H; Zhang Y; Wang X; Hu W; Zhang C
    Sci Total Environ; 2019 Dec; 695():133872. PubMed ID: 31422322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NOM degradation during river infiltration: effects of the climate variables temperature and discharge.
    Diem S; Rudolf von Rohr M; Hering JG; Kohler HP; Schirmer M; von Gunten U
    Water Res; 2013 Nov; 47(17):6585-95. PubMed ID: 24064550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of river channel planar complexity on riparian vegetation-river flow relationships in arid environments.
    Zhang Y
    Sci Total Environ; 2024 Feb; 912():168988. PubMed ID: 38040378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of groundwater discharge for plant species number in riparian zones.
    Jansson R; Laudon H; Johansson E; Augspurger C
    Ecology; 2007 Jan; 88(1):131-9. PubMed ID: 17489461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diurnal patterns of spatial stream temperature variations reveal the need for integrating thermal heterogeneity in riverscape habitat restoration.
    Pander J; Kuhn J; Casas-Mulet R; Habersetzer L; Geist J
    Sci Total Environ; 2024 Mar; 918():170786. PubMed ID: 38331273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fractal nature of groundwater level fluctuations affected by riparian zone vegetation water use and river stage variations.
    Sun H; Gu X; Zhu J; Yu Z; Zhang Y
    Sci Rep; 2019 Oct; 9(1):15383. PubMed ID: 31659180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of two stream temperature models and evaluation of potential management alternatives for the Speed River, Southern Ontario.
    Norton GE; Bradford A
    J Environ Manage; 2009 Feb; 90(2):866-78. PubMed ID: 18406513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of water table fluctuations on phreatophytic root distribution.
    Tron S; Laio F; Ridolfi L
    J Theor Biol; 2014 Nov; 360():102-108. PubMed ID: 25014476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water quality characteristics of vegetated groundwater-fed ditches in a riparian peatland.
    Scholz M; Trepel M
    Sci Total Environ; 2004 Oct; 332(1-3):109-22. PubMed ID: 15336896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model.
    Roth TR; Westhoff MC; Huwald H; Huff JA; Rubin JF; Barrenetxea G; Vetterli M; Parriaux A; Selkeer JS; Parlange MB
    Environ Sci Technol; 2010 Mar; 44(6):2072-8. PubMed ID: 20131784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating thermal infrared stream temperature imagery and spatial stream network models to understand natural spatial thermal variability in streams.
    Fuller MR; Ebersole JL; Detenbeck NE; Labiosa R; Leinenbach P; Torgersen CE
    J Therm Biol; 2021 Aug; 100():103028. PubMed ID: 34503775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Which environmental factors control extreme thermal events in rivers? A multi-scale approach (Wallonia, Belgium).
    Georges B; Michez A; Piegay H; Huylenbroeck L; Lejeune P; Brostaux Y
    PeerJ; 2021; 9():e12494. PubMed ID: 34900423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling instream temperature from solar insolation under varying timber harvesting intensities using RPAS laser scanning.
    Stackhouse LA; Coops NC; Kuiper SD; Hinch SG; White JC; Tompalski P; Nonis A; Gergel SE
    Sci Total Environ; 2024 Feb; 912():169459. PubMed ID: 38123099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps.
    García-Gil A; Vázquez-Suñe E; Schneider EG; Sánchez-Navarro JÁ; Mateo-Lázaro J
    Sci Total Environ; 2014 Jul; 485-486():575-587. PubMed ID: 24747249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing stream temperature variation in the Pacific Northwest using airborne thermal infrared remote sensing.
    Tan J; Cherkauer KA
    J Environ Manage; 2013 Jan; 115():206-16. PubMed ID: 23262409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of River Morphodynamic Disturbance and Groundwater Hydrology As Driving Factors of Riparian Landscape Patterns in Mediterranean Rivers.
    Rivaes R; Pinheiro AN; Egger G; Ferreira T
    Front Plant Sci; 2017; 8():1612. PubMed ID: 28979278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.