These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28318906)

  • 21. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane.
    Morelli AM; Ravera S; Calzia D; Panfoli I
    Open Biol; 2019 Apr; 9(4):180221. PubMed ID: 30966998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response to "Molecular-level understanding of biological energy coupling and transduction: Response to "Chemiosmotic misunderstandings"".
    Silva PJ
    Biophys Chem; 2021 Feb; 269():106512. PubMed ID: 33307371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is the mitochondrial ATP synthesis solely H
    Lemeshko VV
    Biochim Biophys Acta Biomembr; 2024 Jan; 1866(1):184229. PubMed ID: 37704041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New perspectives on photosynthetic phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis.
    Nath S; Elangovan R
    J Bioenerg Biomembr; 2011 Dec; 43(6):601-10. PubMed ID: 22083127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton-consumed nanoarchitectures toward sustainable and efficient photophosphorylation.
    Li G; Fei J; Xu Y; Hong JD; Li J
    J Colloid Interface Sci; 2019 Feb; 535():325-330. PubMed ID: 30316119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 2.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):301-9. PubMed ID: 20490638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond binding change: the molecular mechanism of ATP hydrolysis by F
    Nath S
    Front Chem; 2023; 11():1058500. PubMed ID: 37324562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Need for Consistency with Physical Laws and Logic in Choosing Between Competing Molecular Mechanisms in Biological Processes: A Case Study in Modeling ATP Synthesis.
    Nath S
    Function (Oxf); 2022; 3(6):zqac054. PubMed ID: 36340246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis.
    Nath S
    Bioeng Transl Med; 2019 Jan; 4(1):164-170. PubMed ID: 30680327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms of energy transduction in cells: engineering applications and biological implications.
    Nath S
    Adv Biochem Eng Biotechnol; 2003; 85():125-80. PubMed ID: 12930095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A role for anions in ATP synthesis and its molecular mechanistic interpretation.
    Agarwal B
    J Bioenerg Biomembr; 2011 Jun; 43(3):299-310. PubMed ID: 21647635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A critical appraisal of evidence for localized energy coupling. Kinetic studies on liposomes containing bacteriorhodopsin and ATP synthase.
    Van der Bend RL; Petersen J; Berden JA; Van Dam K; Westerhoff HV
    Biochem J; 1985 Sep; 230(2):543-9. PubMed ID: 2996506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of proton transport coupled ATP synthesis.
    Turina P; Petersen J; Gräber P
    Biochim Biophys Acta; 2016 Jun; 1857(6):653-64. PubMed ID: 26940516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acidic lipids, H(+)-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award.
    Kocherginsky N
    Prog Biophys Mol Biol; 2009 Jan; 99(1):20-41. PubMed ID: 19049812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold fundamental consequences and mechanistic implications and its applications in health and disease.
    Nath S
    Int J Mol Sci; 2008 Sep; 9(9):1784-1840. PubMed ID: 19325832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    J Membr Biol; 2015 Apr; 248(2):163-9. PubMed ID: 25655107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic free energy transduction.
    Westerhoff HV; Chen Y
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3222-6. PubMed ID: 3858819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton semiconductors and energy transduction in biological systems.
    Morowitz HJ
    Am J Physiol; 1978 Sep; 235(3):R99-114. PubMed ID: 696856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active proton leak in mitochondria: a new way to regulate substrate oxidation.
    Mourier A; Devin A; Rigoulet M
    Biochim Biophys Acta; 2010 Feb; 1797(2):255-61. PubMed ID: 19896922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction.
    Wainio WW
    Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.