BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 28319053)

  • 41. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence.
    Wells JL; Bartlett JL; Ananthan S; Bilsky EJ
    J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mu Opioid Pharmacology: 40 Years to the Promised Land.
    Pasternak GW
    Adv Pharmacol; 2018; 82():261-291. PubMed ID: 29413524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of chronic opioid exposure on guinea pig mu opioid receptor in Chinese hamster ovary cells: comparison with human and rat receptor.
    Wallisch M; Nelson CS; Mulvaney JM; Hernandez HS; Smith SA; Olsen GD
    Biochem Pharmacol; 2007 Jun; 73(11):1818-28. PubMed ID: 17343833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Endogenous Opioid Peptides and Alternatively Spliced Mu Opioid Receptor Seven Transmembrane Carboxyl-Terminal Variants.
    Abrimian A; Kraft T; Pan YX
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33917474
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The contribution of MOR-1 exons 1-4 to morphine and heroin analgesia and dependence.
    Klein G; Rossi GC; Waxman AR; Arout C; Juni A; Inturrisi CE; Kest B
    Neurosci Lett; 2009 Jul; 457(3):115-9. PubMed ID: 19429175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine.
    Narita M; Suzuki M; Narita M; Niikura K; Nakamura A; Miyatake M; Yajima Y; Suzuki T
    Neuroscience; 2006; 138(2):609-19. PubMed ID: 16417975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of kappa opioid receptors in the inhibition of receptor desensitization and PKC activation induced by repeated morphine treatment.
    Hamabe W; Yamane H; Harada S; Tokuyama S
    J Pharm Pharmacol; 2008 Sep; 60(9):1183-8. PubMed ID: 18718122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mu opiate receptor gene dose effects on different morphine actions: evidence for differential in vivo mu receptor reserve.
    Sora I; Elmer G; Funada M; Pieper J; Li XF; Hall FS; Uhl GR
    Neuropsychopharmacology; 2001 Jul; 25(1):41-54. PubMed ID: 11377918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opioid agonist efficacy predicts the magnitude of tolerance and the regulation of mu-opioid receptors and dynamin-2.
    Pawar M; Kumar P; Sunkaraneni S; Sirohi S; Walker EA; Yoburn BC
    Eur J Pharmacol; 2007 Jun; 563(1-3):92-101. PubMed ID: 17349996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism.
    Gris P; Gauthier J; Cheng P; Gibson DG; Gris D; Laur O; Pierson J; Wentworth S; Nackley AG; Maixner W; Diatchenko L
    Mol Pain; 2010 Jun; 6():33. PubMed ID: 20525224
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunohistochemical study of the expression of exon11-containing mu opioid receptor variants in mouse brain.
    Abbadie C; Pan YX; Pasternak GW
    Neuroscience; 2004; 127(2):419-30. PubMed ID: 15262332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance.
    Koshimizu TA; Honda K; Nagaoka-Uozumi S; Ichimura A; Kimura I; Nakaya M; Sakai N; Shibata K; Ushijima K; Fujimura A; Hirasawa A; Kurose H; Tsujimoto G; Tanoue A; Takano Y
    Nat Neurosci; 2018 Jun; 21(6):820-833. PubMed ID: 29713080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methocinnamox is a potent, long-lasting, and selective antagonist of morphine-mediated antinociception in the mouse: comparison with clocinnamox, beta-funaltrexamine, and beta-chlornaltrexamine.
    Broadbear JH; Sumpter TL; Burke TF; Husbands SM; Lewis JW; Woods JH; Traynor JR
    J Pharmacol Exp Ther; 2000 Sep; 294(3):933-40. PubMed ID: 10945843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.
    Matsumoto K; Umemoto H; Mori T; Akatsu R; Saito S; Tashima K; Shibasaki M; Kato S; Suzuki T; Horie S
    Eur J Pharmacol; 2016 Jan; 771():220-8. PubMed ID: 26712376
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential expressions of the alternatively spliced variant mRNAs of the µ opioid receptor gene, OPRM1, in brain regions of four inbred mouse strains.
    Xu J; Lu Z; Xu M; Rossi GC; Kest B; Waxman AR; Pasternak GW; Pan YX
    PLoS One; 2014; 9(10):e111267. PubMed ID: 25343478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of new exon 11-associated N-terminal splice variants of the human mu opioid receptor gene.
    Xu J; Xu M; Hurd YL; Pasternak GW; Pan YX
    J Neurochem; 2009 Feb; 108(4):962-72. PubMed ID: 19077058
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphine mediates a proinflammatory phenotype via μ-opioid receptor-PKCɛ-Akt-ERK1/2 signaling pathway in activated microglial cells.
    Merighi S; Gessi S; Varani K; Fazzi D; Stefanelli A; Borea PA
    Biochem Pharmacol; 2013 Aug; 86(4):487-96. PubMed ID: 23796752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.
    Matthes HW; Maldonado R; Simonin F; Valverde O; Slowe S; Kitchen I; Befort K; Dierich A; Le Meur M; Dollé P; Tzavara E; Hanoune J; Roques BP; Kieffer BL
    Nature; 1996 Oct; 383(6603):819-23. PubMed ID: 8893006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacological characterization of dihydromorphine, 6-acetyldihydromorphine and dihydroheroin analgesia and their differentiation from morphine.
    Gilbert AK; Hosztafi S; Mahurter L; Pasternak GW
    Eur J Pharmacol; 2004 May; 492(2-3):123-30. PubMed ID: 15178355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of cAMP-dependent protein kinase (PKA) in opioid agonist-induced mu-opioid receptor downregulation and tolerance in mice.
    Shen J; Benedict Gomes A; Gallagher A; Stafford K; Yoburn BC
    Synapse; 2000 Dec; 38(3):322-7. PubMed ID: 11020235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.