These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28319081)

  • 41. Prokaryotic Argonaute Uses an All-in-One Mechanism to Provide Host Defense.
    Sashital DG
    Mol Cell; 2017 Mar; 65(6):957-958. PubMed ID: 28306508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two symmetric arginine residues play distinct roles in
    Lei J; Sheng G; Cheung PP; Wang S; Li Y; Gao X; Zhang Y; Wang Y; Huang X
    Proc Natl Acad Sci U S A; 2019 Jan; 116(3):845-853. PubMed ID: 30591565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus.
    Shiraishi M; Ishino S; Yamagami T; Egashira Y; Kiyonari S; Ishino Y
    Nucleic Acids Res; 2015 Mar; 43(5):2853-63. PubMed ID: 25694513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structures of the archaeal UDP-GlcNAc 2-epimerase from Methanocaldococcus jannaschii reveal a conformational change induced by UDP-GlcNAc.
    Chen SC; Huang CH; Yang CS; Liu JS; Kuan SM; Chen Y
    Proteins; 2014 Jul; 82(7):1519-26. PubMed ID: 24470206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A programmable pAgo nuclease with RNA target-cleavage specificity from the mesophilic bacterium
    Liu Q; Chen W; Zhang Y; Hu F; Jiang X; Wang F; Liu Y; Ma L
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(8):1204-1212. PubMed ID: 37431184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A YidC-like Protein in the Archaeal Plasma Membrane.
    Borowska MT; Dominik PK; Anghel SA; Kossiakoff AA; Keenan RJ
    Structure; 2015 Sep; 23(9):1715-1724. PubMed ID: 26256539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unexpected binding behaviors of bacterial Argonautes in human cells cast doubts on their use as targetable gene regulators.
    O'Geen H; Ren C; Coggins NB; Bates SL; Segal DJ
    PLoS One; 2018; 13(3):e0193818. PubMed ID: 29584750
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutational analysis of archaeal histone-DNA interactions.
    Soares DJ; Sandman K; Reeve JN
    J Mol Biol; 2000 Mar; 297(1):39-47. PubMed ID: 10704305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prokaryotic Argonaute proteins: novel genome-editing tools?
    Hegge JW; Swarts DC; van der Oost J
    Nat Rev Microbiol; 2018 Jan; 16(1):5-11. PubMed ID: 28736447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nucleic Acid-Binding Assay of Argonaute Protein Using Fluorescence Polarization.
    Miyoshi T
    Methods Mol Biol; 2018; 1680():123-129. PubMed ID: 29030845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct activities of several RNase J proteins in methanogenic archaea.
    Levy S; Portnoy V; Admon J; Schuster G
    RNA Biol; 2011; 8(6):1073-83. PubMed ID: 21955587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elucidation of structure-function relationships in Methanocaldococcus jannaschii RNase P, a multi-subunit catalytic ribonucleoprotein.
    Phan HD; Norris AS; Du C; Stachowski K; Khairunisa BH; Sidharthan V; Mukhopadhyay B; Foster MP; Wysocki VH; Gopalan V
    Nucleic Acids Res; 2022 Aug; 50(14):8154-8167. PubMed ID: 35848927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA recognition by an RNA-guided bacterial Argonaute.
    Doxzen KW; Doudna JA
    PLoS One; 2017; 12(5):e0177097. PubMed ID: 28520746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purine salvage in Methanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase.
    Miller DV; Brown AM; Xu H; Bevan DR; White RH
    Proteins; 2016 Jun; 84(6):828-40. PubMed ID: 26990095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensing of DNA modifications by pAgo proteins in vitro.
    Beskrovnaia M; Agapov A; Makasheva K; Zharkov DO; Esyunina D; Kulbachinskiy A
    Biochimie; 2024 May; 220():39-47. PubMed ID: 38128776
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection.
    Song X; Lei S; Liu S; Liu Y; Fu P; Zeng Z; Yang K; Chen Y; Li M; She Q; Han W
    Nat Commun; 2023 Nov; 14(1):6970. PubMed ID: 37914725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes.
    Sheng G; Gogakos T; Wang J; Zhao H; Serganov A; Juranek S; Tuschl T; Patel DJ; Wang Y
    Nucleic Acids Res; 2017 Sep; 45(15):9149-9163. PubMed ID: 28911094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase.
    Smollett K; Blombach F; Reichelt R; Thomm M; Werner F
    Nat Microbiol; 2017 Mar; 2():17021. PubMed ID: 28248297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The evolutionary journey of Argonaute proteins.
    Swarts DC; Makarova K; Wang Y; Nakanishi K; Ketting RF; Koonin EV; Patel DJ; van der Oost J
    Nat Struct Mol Biol; 2014 Sep; 21(9):743-53. PubMed ID: 25192263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.