BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28319084)

  • 21. Identifying mRNA sequence elements for target recognition by human Argonaute proteins.
    Li J; Kim T; Nutiu R; Ray D; Hughes TR; Zhang Z
    Genome Res; 2014 May; 24(5):775-85. PubMed ID: 24663241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding-induced functional-domain motions in the Argonaute characterized by adaptive advanced sampling.
    Pourjafar-Dehkordi D; Zacharias M
    PLoS Comput Biol; 2021 Nov; 17(11):e1009625. PubMed ID: 34843451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins.
    Lisitskaya L; Aravin AA; Kulbachinskiy A
    Nat Commun; 2018 Dec; 9(1):5165. PubMed ID: 30514832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures.
    Poulsen C; Vaucheret H; Brodersen P
    Plant Cell; 2013 Jan; 25(1):22-37. PubMed ID: 23303917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large domain motions in Ago protein controlled by the guide DNA-strand seed region determine the Ago-DNA-mRNA complex recognition process.
    Xia Z; Huynh T; Ren P; Zhou R
    PLoS One; 2013; 8(1):e54620. PubMed ID: 23382927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The crystal structure of human Argonaute2.
    Schirle NT; MacRae IJ
    Science; 2012 May; 336(6084):1037-40. PubMed ID: 22539551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and Functional Characterization of Plant ARGONAUTE MID Domains.
    Frank F; Nagar B
    Methods Mol Biol; 2017; 1640():227-239. PubMed ID: 28608347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes.
    Sheng G; Gogakos T; Wang J; Zhao H; Serganov A; Juranek S; Tuschl T; Patel DJ; Wang Y
    Nucleic Acids Res; 2017 Sep; 45(15):9149-9163. PubMed ID: 28911094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-guided DNA interference by a prokaryotic Argonaute.
    Swarts DC; Jore MM; Westra ER; Zhu Y; Janssen JH; Snijders AP; Wang Y; Patel DJ; Berenguer J; Brouns SJJ; van der Oost J
    Nature; 2014 Mar; 507(7491):258-261. PubMed ID: 24531762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain.
    Kandeel M; Al-Taher A; Nakashima R; Sakaguchi T; Kandeel A; Nagaya Y; Kitamura Y; Kitade Y
    PLoS One; 2014; 9(5):e94538. PubMed ID: 24788663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies.
    Pantazopoulou VI; Georgiou S; Kakoulidis P; Giannakopoulou SN; Tseleni S; Stravopodis DJ; Anastasiadou E
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes.
    Zhu L; Jiang H; Sheong FK; Cui X; Wang Y; Gao X; Huang X
    Prog Biophys Mol Biol; 2017 Sep; 128():39-46. PubMed ID: 27697475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prokaryotic Argonaute proteins: novel genome-editing tools?
    Hegge JW; Swarts DC; van der Oost J
    Nat Rev Microbiol; 2018 Jan; 16(1):5-11. PubMed ID: 28736447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The AGO proteins: an overview.
    Niaz S
    Biol Chem; 2018 May; 399(6):525-547. PubMed ID: 29447113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Characterization of Entamoeba histolytica Argonaute Proteins Reveals a Repetitive DR-Rich Motif Region That Controls Nuclear Localization.
    Zhang H; Tran V; Manna D; Ehrenkaufer G; Singh U
    mSphere; 2019 Oct; 4(5):. PubMed ID: 31619501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dissection of human Argonaute proteins by DNA shuffling.
    Schürmann N; Trabuco LG; Bender C; Russell RB; Grimm D
    Nat Struct Mol Biol; 2013 Jul; 20(7):818-26. PubMed ID: 23748378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.
    Wang Z; Wang Y; Liu T; Wang Y; Zhang W
    RNA; 2019 May; 25(5):620-629. PubMed ID: 30770397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants.
    Carbonell A; Fahlgren N; Garcia-Ruiz H; Gilbert KB; Montgomery TA; Nguyen T; Cuperus JT; Carrington JC
    Plant Cell; 2012 Sep; 24(9):3613-29. PubMed ID: 23023169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC.
    Sahoo MR; Gaikwad S; Khuperkar D; Ashok M; Helen M; Yadav SK; Singh A; Magre I; Deshmukh P; Dhanvijay S; Sahoo PK; Ramtirtha Y; Madhusudhan MS; Gayathri P; Seshadri V; Joseph J
    EMBO Rep; 2017 Feb; 18(2):241-263. PubMed ID: 28039207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein.
    Deerberg A; Willkomm S; Restle T
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17850-5. PubMed ID: 24101500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.