BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28319179)

  • 1. Biophysical comparison of ATP-driven proton pumping mechanisms suggests a kinetic advantage for the rotary process depending on coupling ratio.
    Anandakrishnan R; Zuckerman DM
    PLoS One; 2017; 12(3):e0173500. PubMed ID: 28319179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process.
    Anandakrishnan R; Zhang Z; Donovan-Maiye R; Zuckerman DM
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11220-11225. PubMed ID: 27647911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shunt.
    Kettner C; Bertl A; Obermeyer G; Slayman C; Bihler H
    Biophys J; 2003 Dec; 85(6):3730-8. PubMed ID: 14645064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps.
    Kabała K; Janicka M
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
    Zhao J; Benlekbir S; Rubinstein JL
    Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protons and how they are transported by proton pumps.
    Buch-Pedersen MJ; Pedersen BP; Veierskov B; Nissen P; Palmgren MG
    Pflugers Arch; 2009 Jan; 457(3):573-9. PubMed ID: 18458946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase.
    Papageorgiou S; Melandri AB; Solaini G
    J Bioenerg Biomembr; 1998 Dec; 30(6):533-41. PubMed ID: 10206473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic models of coupling between H+ and Na(+)-translocation and ATP synthesis/hydrolysis by F0F1-ATPases: can a cell utilize both delta mu H+ and delta mu Na+ for ATP synthesis under in vivo conditions using the same enzyme?
    Kholodenko BN
    J Bioenerg Biomembr; 1993 Jun; 25(3):285-95. PubMed ID: 8394322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F.
    Jefferies KC; Forgac M
    J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luminal and cytosolic pH feedback on proton pump activity and ATP affinity of V-type ATPase from Arabidopsis.
    Rienmüller F; Dreyer I; Schönknecht G; Schulz A; Schumacher K; Nagy R; Martinoia E; Marten I; Hedrich R
    J Biol Chem; 2012 Mar; 287(12):8986-93. PubMed ID: 22215665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the functional coupling of bovine brain vacuolar-type H(+)-translocating ATPase. Effect of divalent cations, phospholipids, and subunit H (SFD).
    Crider BP; Xie XS
    J Biol Chem; 2003 Nov; 278(45):44281-8. PubMed ID: 12949075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling mechanisms in ATP-driven pumps.
    Krupka RM
    Biochim Biophys Acta; 1993 Nov; 1183(1):114-22. PubMed ID: 8399372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
    Lau WC; Rubinstein JL
    Nature; 2011 Dec; 481(7380):214-8. PubMed ID: 22178924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the lemon-fruit V-ATPase by variable stoichiometry and organic acids.
    Müller ML; Taiz L
    J Membr Biol; 2002 Feb; 185(3):209-20. PubMed ID: 11891579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picture story. How proton pumps make ATP.
    Konforti B
    Nat Struct Biol; 1999 Dec; 6(12):1090. PubMed ID: 10581545
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P
    D'Alessandro M; Turina P; Melandri BA; Dunn SD
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):34-44. PubMed ID: 27751906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force.
    Feniouk BA; Rebecchi A; Giovannini D; Anefors S; Mulkidjanian AY; Junge W; Turina P; Melandri BA
    Biochim Biophys Acta; 2007 Nov; 1767(11):1319-30. PubMed ID: 17904517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.