BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28319731)

  • 1. Stimulating CD27 to quantitatively and qualitatively shape adaptive immunity to cancer.
    Bullock TN
    Curr Opin Immunol; 2017 Apr; 45():82-88. PubMed ID: 28319731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7).
    Starzer AM; Berghoff AS
    ESMO Open; 2020 Mar; 4(Suppl 3):e000629. PubMed ID: 32152062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eight-Color Multiplex Immunohistochemistry for Simultaneous Detection of Multiple Immune Checkpoint Molecules within the Tumor Microenvironment.
    Gorris MAJ; Halilovic A; Rabold K; van Duffelen A; Wickramasinghe IN; Verweij D; Wortel IMN; Textor JC; de Vries IJM; Figdor CG
    J Immunol; 2018 Jan; 200(1):347-354. PubMed ID: 29141863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy.
    Wasiuk A; Testa J; Weidlick J; Sisson C; Vitale L; Widger J; Crocker A; Thomas LJ; Goldstein J; Marsh HC; Keler T; He LZ
    J Immunol; 2017 Dec; 199(12):4110-4123. PubMed ID: 29109120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy.
    Buchan SL; Rogel A; Al-Shamkhani A
    Blood; 2018 Jan; 131(1):39-48. PubMed ID: 29118006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute Virus Control Mediated by Licensed NK Cells Sets Primary CD8+ T Cell Dependence on CD27 Costimulation.
    Teoh JJ; Gamache AE; Gillespie AL; Stadnisky MD; Yagita H; Bullock TN; Brown MG
    J Immunol; 2016 Dec; 197(11):4360-4370. PubMed ID: 27798162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune checkpoint inhibitors with radiotherapy and locoregional treatment: synergism and potential clinical implications.
    Esposito A; Criscitiello C; Curigliano G
    Curr Opin Oncol; 2015 Nov; 27(6):445-51. PubMed ID: 26447875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4.
    Hahn AW; Gill DM; Pal SK; Agarwal N
    Immunotherapy; 2017 Jun; 9(8):681-692. PubMed ID: 28653573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Cancer Immunotherapy Via Activation of Innate Immunity.
    Goldberg JL; Sondel PM
    Semin Oncol; 2015 Aug; 42(4):562-72. PubMed ID: 26320061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIGIT: A Key Inhibitor of the Cancer Immunity Cycle.
    Manieri NA; Chiang EY; Grogan JL
    Trends Immunol; 2017 Jan; 38(1):20-28. PubMed ID: 27793572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tim-3 and its role in regulating anti-tumor immunity.
    Das M; Zhu C; Kuchroo VK
    Immunol Rev; 2017 Mar; 276(1):97-111. PubMed ID: 28258697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses.
    Ward-Kavanagh LK; Lin WW; Šedý JR; Ware CF
    Immunity; 2016 May; 44(5):1005-19. PubMed ID: 27192566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors.
    Khawli LA; Hu P; Epstein AL
    Handb Exp Pharmacol; 2008; (181):291-328. PubMed ID: 18071951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines.
    Butt AQ; Mills KH
    Oncogene; 2014 Sep; 33(38):4623-31. PubMed ID: 24141774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New toxicity profile for novel immunotherapy agents: focus on immune-checkpoint inhibitors.
    Ciccarese C; Alfieri S; Santoni M; Santini D; Brunelli M; Bergamini C; Licitra L; Montironi R; Tortora G; Massari F
    Expert Opin Drug Metab Toxicol; 2016; 12(1):57-75. PubMed ID: 26565919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation.
    Yaguchi T; Kawakami Y
    Int Immunol; 2016 Aug; 28(8):393-9. PubMed ID: 27401477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propelling Immunotherapy Combinations Into the Clinic.
    Tchekmedyian N; Gray JE; Creelan BC; Chiappori AA; Beg AA; Soliman H; Perez BA; Antonia SJ
    Oncology (Williston Park); 2015 Dec; 29(12):990-1002. PubMed ID: 26680224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.