These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28319773)

  • 1. Potential of water-washing of rape straw on thermal properties and interactions during co-combustion with bituminous coal.
    Ma Q; Han L; Huang G
    Bioresour Technol; 2017 Jun; 234():53-60. PubMed ID: 28319773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.
    Zhou C; Liu G; Wang X; Qi C; Hu Y
    Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).
    Idris SS; Rahman NA; Ismail K
    Bioresour Technol; 2012 Nov; 123():581-91. PubMed ID: 22944493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alkali and alkaline earth metal species on the combustion characteristics of single particles from pine sawdust and bituminous coal.
    Zhang R; Lei K; Ye BQ; Cao J; Liu D
    Bioresour Technol; 2018 Nov; 268():278-285. PubMed ID: 30086454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.
    Zhou C; Liu G; Wang X; Qi C
    Bioresour Technol; 2016 Oct; 218():418-27. PubMed ID: 27393832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Apr; 181():62-71. PubMed ID: 25638405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.
    Buratti C; Barbanera M; Bartocci P; Fantozzi F
    Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis characteristic of biomass and bituminous coal.
    Li S; Chen X; Liu A; Wang L; Yu G
    Bioresour Technol; 2015 Mar; 179():414-420. PubMed ID: 25553573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of water washing on the thermal behavior of rice straw.
    Said N; Bishara T; García-Maraver A; Zamorano M
    Waste Manag; 2013 Nov; 33(11):2250-6. PubMed ID: 23932080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.
    Zhang K; Zhang K; Cao Y; Pan WP
    Bioresour Technol; 2013 Mar; 131():325-32. PubMed ID: 23370215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on reactivity characteristics and synergy behaviours of rice straw and bituminous coal co-gasification.
    Wei J; Guo Q; Chen H; Chen X; Yu G
    Bioresour Technol; 2016 Nov; 220():509-515. PubMed ID: 27611034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue.
    Zhou C; Liu G; Fang T; Lam PK
    Bioresour Technol; 2015 Jan; 175():454-62. PubMed ID: 25459855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.
    Li XG; Lv Y; Ma BG; Jian SW; Tan HB
    Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Emission Characteristics of Residential Coal Combustion Flue Gas in Beijing].
    Liang YP; Zhang DW; Lin AG; Ma ZH; Wu XD
    Huan Jing Ke Xue; 2017 May; 38(5):1775-1782. PubMed ID: 29965080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combustion characteristics of coal and refuse from passenger trains.
    Fu-min R; Feng Y; Ming G; Min Y
    Waste Manag; 2010 Jul; 30(7):1196-205. PubMed ID: 20093000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.
    Li H; Xia S; Ma P
    Bioresour Technol; 2016 Oct; 218():615-22. PubMed ID: 27416511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.