BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28319901)

  • 1. A novel microbial fuel cell sensor with biocathode sensing element.
    Jiang Y; Liang P; Liu P; Wang D; Miao B; Huang X
    Biosens Bioelectron; 2017 Aug; 94():344-350. PubMed ID: 28319901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.
    Jiang Y; Liang P; Huang X; Ren ZJ
    Chemosphere; 2018 Jul; 203():21-25. PubMed ID: 29604426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring.
    Zhao T; Xie B; Yi Y; Liu H
    Bioresour Technol; 2019 Mar; 276():276-280. PubMed ID: 30640022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-microbial electrochemical sensor equipped with combined bioanode and biocathode for water biotoxicity monitoring.
    Chu N; Liang Q; Hao W; Jiang Y; Zeng RJ
    Bioresour Technol; 2021 Apr; 326():124743. PubMed ID: 33503515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open external circuit for microbial fuel cell sensor to monitor the nitrate in aquatic environment.
    Wang D; Liang P; Jiang Y; Liu P; Miao B; Hao W; Huang X
    Biosens Bioelectron; 2018 Jul; 111():97-101. PubMed ID: 29660586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal set of electrode potential enhances the toxicity response of biocathode to formaldehyde.
    Liao C; Wu J; Zhou L; Li T; Du Q; An J; Li N; Wang X
    Sci Total Environ; 2018 Dec; 644():1485-1492. PubMed ID: 30743861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter.
    Jiang Y; Liang P; Liu P; Bian Y; Miao B; Sun X; Zhang H; Huang X
    Int J Mol Sci; 2016 Aug; 17(9):. PubMed ID: 27563887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid warning of emerging contaminants in reuse water using biocathode sensors.
    Han Y; Li H; Liao C; Zhu X; Wang Z; Yan J; Wang X
    J Hazard Mater; 2023 Sep; 457():131735. PubMed ID: 37269559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocathode prepared at low anodic potentials achieved a higher response for water biotoxicity monitoring after polarity reversal.
    Chu N; Jiang Y; Zhang L; Zeng RJ; Li D
    Sci Total Environ; 2022 Nov; 847():157553. PubMed ID: 35878860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an MFC-biosensor for determination of Pb
    Cetinkaya AY; Kuzu SL; Bilgili L
    Environ Monit Assess; 2022 Mar; 194(4):245. PubMed ID: 35246745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell.
    Xu L; Yu W; Graham N; Zhao Y
    Chemosphere; 2021 Feb; 264(Pt 1):128532. PubMed ID: 33038753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of organic matters and nitrogenous pollutants simultaneously from two different wastewaters using biocathode microbial fuel cell.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Sep; 49(11):1265-75. PubMed ID: 24967560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.
    Hsieh MC; Cheng CY; Liu MH; Chung YC
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.
    Wang GH; Cheng CY; Liu MH; Chen TY; Hsieh MC; Chung YC
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative evaluation method for wastewater toxicity based on a microbial fuel cell.
    Lu H; Yu Y; Zhou Y; Xing F
    Ecotoxicol Environ Saf; 2019 Nov; 183():109589. PubMed ID: 31509929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Fuel Cell Biosensor with Capillary Carbon Source Delivery for Real-Time Toxicity Detection.
    Adekunle A; Bambace S; Tanguay-Rioux F; Tartakovsky B
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term operation of manure-microbial fuel cell.
    Zhang G; Zhao Q; Jiao Y; Lee DJ
    Bioresour Technol; 2015 Mar; 180():365-9. PubMed ID: 25603729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor.
    Pan J; Hu J; Liu B; Li J; Wang D; Bu C; Wang X; Xiao K; Liang S; Yang J; Hou H
    Environ Res; 2020 Feb; 181():108906. PubMed ID: 31740039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.