BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 28320131)

  • 1. Epigenetic and gene expression alterations of FOXP3 in the T cells of EAE mouse model of multiple sclerosis.
    Noori-Zadeh A; Mesbah-Namin SA; Saboor-Yaraghi AA
    J Neurol Sci; 2017 Apr; 375():203-208. PubMed ID: 28320131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery.
    Fransson M; Piras E; Burman J; Nilsson B; Essand M; Lu B; Harris RA; Magnusson PU; Brittebo E; Loskog AS
    J Neuroinflammation; 2012 May; 9():112. PubMed ID: 22647574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BACH2: The Future of Induced T-Regulatory Cell Therapies.
    Zwick D; Vo MT; Shim YJ; Reijonen H; Do JS
    Cells; 2024 May; 13(11):. PubMed ID: 38891024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myelin basic protein priming reduces the expression of Foxp3 in T cells via nitric oxide.
    Brahmachari S; Pahan K
    J Immunol; 2010 Feb; 184(4):1799-809. PubMed ID: 20083653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEPITEM Treatment Ameliorates EAE in Mice by Reducing CNS Inflammation, Leukocyte Infiltration, Demyelination, and Proinflammatory Cytokine Production.
    Alassiri M; Al Sufiani F; Aljohi M; Alanazi A; Alhazmi AS; Alrfaei BM; Alnakhli H; Alshawakir YA; Alharby SM; Almubarak AY; Alasseiri M; Alorf N; Abdullah ML
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling.
    Wang Y; Telesford KM; Ochoa-Repáraz J; Haque-Begum S; Christy M; Kasper EJ; Wang L; Wu Y; Robson SC; Kasper DL; Kasper LH
    Nat Commun; 2014 Jul; 5():4432. PubMed ID: 25043484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation.
    Yu X; Lao Y; Teng XL; Li S; Zhou Y; Wang F; Guo X; Deng S; Chang Y; Wu X; Liu Z; Chen L; Lu LM; Cheng J; Li B; Su B; Jiang J; Li HB; Huang C; Yi J; Zou Q
    Nat Commun; 2018 Aug; 9(1):3157. PubMed ID: 30089837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of transcription factors in shaping regulatory T cell identity.
    Trujillo-Ochoa JL; Kazemian M; Afzali B
    Nat Rev Immunol; 2023 Dec; 23(12):842-856. PubMed ID: 37336954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis.
    Frueh JT; Campe J; Sunaga-Franze DY; Verheyden NA; Ghimire S; Meedt E; Haslinger D; Harenkamp S; Staudenraus D; Sauer S; Kreft A; Schubert R; Lohoff M; Krueger A; Bonig H; Chiocchetti AG; Zeiser R; Holler E; Ullrich E
    Oncoimmunology; 2024; 13(1):2296712. PubMed ID: 38170159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression.
    Grant FM; Yang J; Nasrallah R; Clarke J; Sadiyah F; Whiteside SK; Imianowski CJ; Kuo P; Vardaka P; Todorov T; Zandhuis N; Patrascan I; Tough DF; Kometani K; Eil R; Kurosaki T; Okkenhaug K; Roychoudhuri R
    J Exp Med; 2020 Sep; 217(9):. PubMed ID: 32515782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA helicase DDX39B activates FOXP3 RNA splicing to control T regulatory cell fate.
    Hirano M; Galarza-Muñoz G; Nagasawa C; Schott G; Wang L; Antonia AL; Jain V; Yu X; Widen SG; Briggs FBS; Gregory SG; Ko DC; Fagg WS; Bradrick S; Garcia-Blanco MA
    Elife; 2023 Jun; 12():. PubMed ID: 37261960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model.
    Libbey JE; Sanchez JM; Doty DJ; Sim JT; Cusick MF; Cox JE; Fischer KF; Round JL; Fujinami RS
    Benef Microbes; 2018 Apr; 9(3):495-513. PubMed ID: 29380645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRNAs in multiple sclerosis: regulating the regulators.
    Guerau-de-Arellano M; Lovett-Racke AE; Racke MK
    J Neuroimmunol; 2010 Dec; 229(1-2):3-4. PubMed ID: 20888650
    [No Abstract]   [Full Text] [Related]  

  • 14. Adaptive human immunity drives remyelination in a mouse model of demyelination.
    El Behi M; Sanson C; Bachelin C; Guillot-Noël L; Fransson J; Stankoff B; Maillart E; Sarrazin N; Guillemot V; Abdi H; Cournu-Rebeix I; Fontaine B; Zujovic V
    Brain; 2017 Apr; 140(4):967-980. PubMed ID: 28334918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNS Demyelination with TNF-α Blockers.
    Kemanetzoglou E; Andreadou E
    Curr Neurol Neurosci Rep; 2017 Apr; 17(4):36. PubMed ID: 28337644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetics of CD4+ T cells in autoimmune diseases.
    Wang Z; Chang C; Lu Q
    Curr Opin Rheumatol; 2017 Jul; 29(4):361-368. PubMed ID: 28362657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug Efficacy Monitoring in Pharmacotherapy of Multiple Sclerosis With Biological Agents.
    Caldano M; Raoul W; Rispens T; Bertolotto A
    Ther Drug Monit; 2017 Aug; 39(4):350-355. PubMed ID: 28328761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiR-384 Regulates the Th17/Treg Ratio during Experimental Autoimmune Encephalomyelitis Pathogenesis.
    Qu X; Han J; Zhang Y; Wang Y; Zhou J; Fan H; Yao R
    Front Cell Neurosci; 2017; 11():88. PubMed ID: 28400721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of exosomes in CNS inflammation and their involvement in multiple sclerosis.
    Selmaj I; Mycko MP; Raine CS; Selmaj KW
    J Neuroimmunol; 2017 May; 306():1-10. PubMed ID: 28385180
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zemmour D; Pratama A; Loughhead SM; Mathis D; Benoist C
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):E3472-E3480. PubMed ID: 28396406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.