These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 28320184)
1. Reliability of single- and paired-pulse transcranial magnetic stimulation for the assessment of knee extensor muscle function. Temesi J; Ly SN; Millet GY J Neurol Sci; 2017 Apr; 375():442-449. PubMed ID: 28320184 [TBL] [Abstract][Full Text] [Related]
2. Reliability of single and paired-pulse transcranial magnetic stimulation in the vastus lateralis muscle. O'Leary TJ; Morris MG; Collett J; Howells K Muscle Nerve; 2015 Oct; 52(4):605-15. PubMed ID: 25620286 [TBL] [Abstract][Full Text] [Related]
3. Reliability of transcranial magnetic stimulation-evoked responses on knee extensor muscles during cycling. Zhang J; McClean ZJ; Khaledi N; Morgan SJ; Millet GY; Aboodarda SJ Exp Brain Res; 2024 Jul; 242(7):1681-1695. PubMed ID: 38806709 [TBL] [Abstract][Full Text] [Related]
4. Reliability of relaxation properties of knee-extensor muscles induced by transcranial magnetic stimulation. Vernillo G; Barbi C; Temesi J; Giuriato G; Giuseppe Laginestra F; Martignon C; Schena F; Venturelli M Neurosci Lett; 2022 Jun; 782():136694. PubMed ID: 35609711 [TBL] [Abstract][Full Text] [Related]
5. Anticipation of magnetic and electrical stimuli does not impair maximal voluntary force production. Peyrard A; Sawh P; Fan S; Temesi J; Millet GY Neurosci Lett; 2016 Aug; 628():128-31. PubMed ID: 27297772 [TBL] [Abstract][Full Text] [Related]
7. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805 [TBL] [Abstract][Full Text] [Related]
8. The effect of transcranial magnetic stimulation test intensity on the amplitude, variability and reliability of motor evoked potentials. Pellegrini M; Zoghi M; Jaberzadeh S Brain Res; 2018 Dec; 1700():190-198. PubMed ID: 30194017 [TBL] [Abstract][Full Text] [Related]
9. Reliability of corticospinal excitability and intracortical inhibition in biceps femoris during different contraction modes. Presland JD; Tofari PJ; Timmins RG; Kidgell DJ; Opar DA Eur J Neurosci; 2023 Jan; 57(1):91-105. PubMed ID: 36382424 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Waveform and Current Direction on the Efficacy and Test-Retest Reliability of Transcranial Magnetic Stimulation. Davila-Pérez P; Jannati A; Fried PJ; Cudeiro Mazaira J; Pascual-Leone A Neuroscience; 2018 Nov; 393():97-109. PubMed ID: 30300705 [TBL] [Abstract][Full Text] [Related]
11. Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Sidhu SK; Bentley DJ; Carroll TJ Muscle Nerve; 2009 Feb; 39(2):186-96. PubMed ID: 19034956 [TBL] [Abstract][Full Text] [Related]
12. Reliability of the functional measures of the corticospinal pathways to dorsiflexor muscles during maximal voluntary contractions. Souron R; Farabet A; Millet GY; Lapole T J Neurol Sci; 2016 Oct; 369():368-374. PubMed ID: 27653925 [TBL] [Abstract][Full Text] [Related]
13. Conditioning the cortical silent period with paired transcranial magnetic stimulation. Silbert BI; Thickbroom GW Brain Stimul; 2013 Jul; 6(4):541-4. PubMed ID: 23092703 [TBL] [Abstract][Full Text] [Related]
14. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation. Lagan J; Lang P; Strutton PH Clin Neurophysiol; 2008 Dec; 119(12):2839-45. PubMed ID: 18976953 [TBL] [Abstract][Full Text] [Related]
15. The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation. Biabani M; Farrell M; Zoghi M; Egan G; Jaberzadeh S Neurosci Lett; 2018 May; 674():94-100. PubMed ID: 29551425 [TBL] [Abstract][Full Text] [Related]
16. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Lorenzano C; Gilio F; Inghilleri M; Conte A; Fofi L; Manfredi M; Berardelli A Exp Brain Res; 2002 Nov; 147(2):186-92. PubMed ID: 12410333 [TBL] [Abstract][Full Text] [Related]
17. Longer Transcranial Magnetic Stimulation Intertrial Interval Increases Size, Reduces Variability, and Improves the Reliability of Motor Evoked Potentials. Hassanzahraee M; Zoghi M; Jaberzadeh S Brain Connect; 2019 Dec; 9(10):770-776. PubMed ID: 31744309 [TBL] [Abstract][Full Text] [Related]
18. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Raco V; Bauer R; Norim S; Gharabaghi A Brain Stimul; 2017; 10(6):1055-1060. PubMed ID: 28779945 [TBL] [Abstract][Full Text] [Related]
19. Ongoing cumulative effects of single TMS pulses on corticospinal excitability: An intra- and inter-block investigation. Pellicciari MC; Miniussi C; Ferrari C; Koch G; Bortoletto M Clin Neurophysiol; 2016 Jan; 127(1):621-628. PubMed ID: 25823698 [TBL] [Abstract][Full Text] [Related]
20. Strength-Duration Relationship in Paired-pulse Transcranial Magnetic Stimulation (TMS) and Its Implications for Repetitive TMS. Shirota Y; Sommer M; Paulus W Brain Stimul; 2016; 9(5):755-761. PubMed ID: 27234142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]