These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 28320266)

  • 61. Synaptic Ménage à Trois.
    Furlanis E; Scheiffele P
    Neuron; 2016 May; 90(4):665-7. PubMed ID: 27196968
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synaptic plasticity in the amygdala: comparisons with hippocampus.
    Chapman PF; Ramsay MF; Krezel W; Knevett SG
    Ann N Y Acad Sci; 2003 Apr; 985():114-24. PubMed ID: 12724153
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hippocampal synaptic plasticity and cognition.
    Akhondzadeh S
    J Clin Pharm Ther; 1999 Aug; 24(4):241-8. PubMed ID: 10475982
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NMDA-dependent switch of proBDNF actions on developing GABAergic synapses.
    Langlois A; Diabira D; Ferrand N; Porcher C; Gaiarsa JL
    Cereb Cortex; 2013 May; 23(5):1085-96. PubMed ID: 22510533
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plasticity of GABAergic synapses in the neonatal rat hippocampus.
    Gaïarsa JL
    J Cell Mol Med; 2004; 8(1):31-7. PubMed ID: 15090258
    [TBL] [Abstract][Full Text] [Related]  

  • 66. New Roles for an Ancient Factor.
    Lee FS; Hempstead BL
    Trends Neurosci; 2018 Nov; 41(11):765-767. PubMed ID: 30219601
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hebbian synapses in cortical and hippocampal pathways.
    Skrebitsky VG; Chepkova AN
    Rev Neurosci; 1998; 9(4):243-64. PubMed ID: 9886140
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.
    Nisticò R; Mango D; Mandolesi G; Piccinin S; Berretta N; Pignatelli M; Feligioni M; Musella A; Gentile A; Mori F; Bernardi G; Nicoletti F; Mercuri NB; Centonze D
    PLoS One; 2013; 8(1):e54666. PubMed ID: 23355887
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synergistic excitability plasticity in cerebellar functioning.
    Ohtsuki G; Shishikura M; Ozaki A
    FEBS J; 2020 Nov; 287(21):4557-4593. PubMed ID: 32367676
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Long-lasting hippocampal plasticity: cellular model for memory consolidation?
    Frey JU
    Results Probl Cell Differ; 2001; 34():27-40. PubMed ID: 11288677
    [No Abstract]   [Full Text] [Related]  

  • 71. Modulation of NMDA Receptors by G-protein-coupled receptors: Role in Synaptic Transmission, Plasticity and Beyond.
    Lutzu S; Castillo PE
    Neuroscience; 2021 Feb; 456():27-42. PubMed ID: 32105741
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synaptic mechanisms for plasticity in neocortex.
    Feldman DE
    Annu Rev Neurosci; 2009; 32():33-55. PubMed ID: 19400721
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Double-edged GABAergic synaptic transmission in seizures: The importance of chloride plasticity.
    Wang Y; Wang Y; Chen Z
    Brain Res; 2018 Dec; 1701():126-136. PubMed ID: 30201259
    [TBL] [Abstract][Full Text] [Related]  

  • 74. MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation.
    Garcia-Osta A; Tsokas P; Pollonini G; Landau EM; Blitzer R; Alberini CM
    J Neurosci; 2006 Jul; 26(30):7919-32. PubMed ID: 16870737
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hippocampal GABAergic transmission: a new target for adenosine control of excitability.
    Rombo DM; Ribeiro JA; Sebastião AM
    J Neurochem; 2016 Dec; 139(6):1056-1070. PubMed ID: 27778347
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity.
    Fujiwara T; Mishima T; Kofuji T; Chiba T; Tanaka K; Yamamoto A; Akagawa K
    J Neurosci; 2006 May; 26(21):5767-76. PubMed ID: 16723534
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spike-timing-dependent synaptic plasticity - the long road towards understanding neuronal mechanisms of learning and memory.
    Tsodyks M
    Trends Neurosci; 2002 Dec; 25(12):599-600. PubMed ID: 12446119
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity.
    Chiu CQ; Barberis A; Higley MJ
    Nat Rev Neurosci; 2019 May; 20(5):272-281. PubMed ID: 30837689
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanisms of GABAergic homeostatic plasticity.
    Wenner P
    Neural Plast; 2011; 2011():489470. PubMed ID: 21876819
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Activation by GABAb, reduction of the intracellular concentration of Ca++, and inhibition of protein kinases are possible mechanisms of the long-term posttetanic modification of the efficiency of inhibitory transmission in the new cortex.
    Sil'kis IG
    Neurosci Behav Physiol; 1996; 26(1):88-97. PubMed ID: 8801474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.