These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 28320536)
1. Retention models and interaction mechanisms of benzene and other aromatic molecules with an amylose-based sorbent. Hsieh HY; Wu SG; Tsui HW J Chromatogr A; 2017 Apr; 1494():55-64. PubMed ID: 28320536 [TBL] [Abstract][Full Text] [Related]
2. Elucidation of adsorption mechanisms of solvent molecules with distinct functional groups on amylose tris(3,5-dimethylphenylcarbamate)-based sorbent. Wu SG; Lin AY; Hsieh HY; Tsui HW J Chromatogr A; 2016 Aug; 1460():123-34. PubMed ID: 27432786 [TBL] [Abstract][Full Text] [Related]
3. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism. Tsui HW; Franses EI; Wang NH J Chromatogr A; 2014 Feb; 1328():52-65. PubMed ID: 24444802 [TBL] [Abstract][Full Text] [Related]
4. Solvent effects on the retention mechanisms of an amylose-based sorbent. Tsui HW; Cheng KT; Lin AY; Chen SC; Hung YL; Chou PY J Chromatogr A; 2018 Jun; 1556():64-72. PubMed ID: 29731289 [TBL] [Abstract][Full Text] [Related]
5. Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent. Tsui HW; Hwang MY; Ling L; Franses EI; Wang NH J Chromatogr A; 2013 Mar; 1279():36-48. PubMed ID: 23374367 [TBL] [Abstract][Full Text] [Related]
6. Effect of solvent composition on the van't Hoff enthalpic curve using amylose 3,5-dichlorophenylcarbamate-based sorbent. Lin AY; Cheng KT; Chen SC; Tsui HW J Chromatogr A; 2017 Sep; 1515():179-186. PubMed ID: 28803646 [TBL] [Abstract][Full Text] [Related]
7. Effect of 2-propanol content on solute retention mechanisms determined using amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase under normal- and reversed-phase conditions. Tsui HW; Zhang HL; Hsieh CH J Chromatogr A; 2021 Aug; 1650():462226. PubMed ID: 34087518 [TBL] [Abstract][Full Text] [Related]
8. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography. Tsui HW; Lin SZ; Hsu YC; Dai FJ J Chromatogr A; 2022 Jan; 1662():462736. PubMed ID: 34923304 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition. Tsui HW; Kuo CH; Huang YC J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162 [TBL] [Abstract][Full Text] [Related]
10. Chiral recognition mechanism of acyloin-containing chiral solutes by amylose tris[(S)-α-methylbenzylcarbamate]. Tsui HW; Wang NH; Franses EI J Phys Chem B; 2013 Aug; 117(31):9203-16. PubMed ID: 23848510 [TBL] [Abstract][Full Text] [Related]
11. Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments. Sander M; Pignatello JJ Environ Sci Technol; 2005 Mar; 39(6):1606-15. PubMed ID: 15819216 [TBL] [Abstract][Full Text] [Related]
12. Direct probing of sorbent-solvent interactions for amylose tris(3,5-dimethylphenylcarbamate) using infrared spectroscopy, X-ray diffraction, solid-state NMR, and DFT modeling. Kasat RB; Zvinevich Y; Hillhouse HW; Thomson KT; Wang NH; Franses EI J Phys Chem B; 2006 Jul; 110(29):14114-22. PubMed ID: 16854108 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic analysis of adsorption and retention behaviors in normal-phase liquid chromatography. Tsui HW; Zhou WL; Wu CD J Chromatogr A; 2024 Nov; 1736():465383. PubMed ID: 39307036 [TBL] [Abstract][Full Text] [Related]
14. Experimental and computational studies of enantioseparation of structurally similar chiral compounds on amylose tris(3,5-dimethylphenylcarbamate). Kasat RB; Franses EI; Wang NH Chirality; 2010 Jun; 22(6):565-79. PubMed ID: 19885823 [TBL] [Abstract][Full Text] [Related]
15. Enantioseparation and plant virucidal bioactivity of new quinazoline derivatives with alpha-aminophosphonate moiety. Zhang Y; Bai S; Song B; Bhadury PS; Hu D; Yang S; Zhang X; Fan H; Lu P J Chromatogr B Analyt Technol Biomed Life Sci; 2010 May; 878(17-18):1285-9. PubMed ID: 19963443 [TBL] [Abstract][Full Text] [Related]
16. Hysteresis of retention and enantioselectivity on amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases in mixtures of 2-propanol and methanol. Horváth S; Németh G J Chromatogr A; 2018 Sep; 1568():149-159. PubMed ID: 30064816 [TBL] [Abstract][Full Text] [Related]
17. Adsorption behavior of the (+/-)-Tröger's base enantiomers in the phase system of a silica-based packing coated with amylose tri(3,5-dimethyl carbamate) and 2-propanol and molecular modeling interpretation. Mihlbachler K; De Jesús MA; Kaczmarski K; Sepaniak MJ; Seidel-Morgenstern A; Guiochon G J Chromatogr A; 2006 Apr; 1113(1-2):148-61. PubMed ID: 16516901 [TBL] [Abstract][Full Text] [Related]
18. Liquid chromatographic separation and thermodynamic investigation of stereoisomers of darunavir on Chiralpak AD-H column. Rao RN; Kumar KN; Kumar BS J Sep Sci; 2012 Oct; 35(20):2671-7. PubMed ID: 22945877 [TBL] [Abstract][Full Text] [Related]
19. Effect of solvents on the chiral recognition mechanisms of immobilized cellulose-based chiral stationary phase. Tsui HW; Ye PW; Huang SX J Chromatogr A; 2021 Jan; 1637():461796. PubMed ID: 33387913 [TBL] [Abstract][Full Text] [Related]
20. Structures and properties of molecular torsion balances to decipher the nature of substituent effects on the aromatic edge-to-face interaction. Gardarsson H; Schweizer WB; Trapp N; Diederich F Chemistry; 2014 Apr; 20(16):4608-16. PubMed ID: 24652763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]