These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28320673)
1. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis. Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673 [TBL] [Abstract][Full Text] [Related]
2. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression. Smith LH; Kuiken TA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462 [TBL] [Abstract][Full Text] [Related]
3. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
4. Multi-Grip Classification-Based Prosthesis Control With Two EMG-IMU Sensors. Krasoulis A; Vijayakumar S; Nazarpour K IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):508-518. PubMed ID: 31841413 [TBL] [Abstract][Full Text] [Related]
5. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. Jiang N; Vest-Nielsen JL; Muceli S; Farina D J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707 [TBL] [Abstract][Full Text] [Related]
6. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements. Pan L; Crouch DL; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862 [TBL] [Abstract][Full Text] [Related]
7. Can transcranial direct current stimulation enhance performance of myoelectric control for multifunctional prosthesis? Pan L; Zhang D; Duan R; Zhu X Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3566-9. PubMed ID: 25570761 [TBL] [Abstract][Full Text] [Related]
8. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. Geng Y; Zhou P; Li G J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049 [TBL] [Abstract][Full Text] [Related]
9. Improving bimanual interaction with a prosthesis using semi-autonomous control. Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087 [TBL] [Abstract][Full Text] [Related]
10. Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis. Alshammary NA; Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):468-476. PubMed ID: 29432114 [TBL] [Abstract][Full Text] [Related]
11. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface. Pan L; Crouch DL; Huang H IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153 [TBL] [Abstract][Full Text] [Related]
12. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. Cipriani C; Antfolk C; Controzzi M; Lundborg G; Rosen B; Carrozza MC; Sebelius F IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):260-70. PubMed ID: 21292599 [TBL] [Abstract][Full Text] [Related]
13. Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier. D'Accolti D; Dejanovic K; Cappello L; Mastinu E; Ortiz-Catalan M; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2023; 31():208-217. PubMed ID: 36327175 [TBL] [Abstract][Full Text] [Related]
14. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. Daley H; Englehart K; Hargrove L; Kuruganti U J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773 [TBL] [Abstract][Full Text] [Related]
15. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes. Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495 [TBL] [Abstract][Full Text] [Related]
16. Resolving the effect of wrist position on myoelectric pattern recognition control. Adewuyi AA; Hargrove LJ; Kuiken TA J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991 [TBL] [Abstract][Full Text] [Related]
17. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures. Lyons KR; Joshi SS; Joshi SS; Lyons KR IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241 [TBL] [Abstract][Full Text] [Related]
18. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. Crouch DL; Huang H J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972 [TBL] [Abstract][Full Text] [Related]
19. Assessment of a multigrasp myoelectric control approach for use by transhumeral amputees. Alshammary NA; Dalley SA; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():968-71. PubMed ID: 23366055 [TBL] [Abstract][Full Text] [Related]
20. A Modular Transradial Bypass Socket for Surface Myoelectric Prosthetic Control in Non-Amputees. Paskett MD; Olsen NR; George JA; Kluger DT; Brinton MR; Davis TS; Duncan CC; Clark GA IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2070-2076. PubMed ID: 31536008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]