These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28320772)

  • 1. Mechanism for microbial population collapse in a fluctuating resource environment.
    Turkarslan S; Raman AV; Thompson AW; Arens CE; Gillespie MA; von Netzer F; Hillesland KL; Stolyar S; López García de Lomana A; Reiss DJ; Gorman-Lewis D; Zane GM; Ranish JA; Wall JD; Stahl DA; Baliga NS
    Mol Syst Biol; 2017 Mar; 13(3):919. PubMed ID: 28320772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness of a model microbial community emerges from population structure among single cells of a clonal population.
    Thompson AW; Turkarslan S; Arens CE; López García de Lomana A; Raman AV; Stahl DA; Baliga NS
    Environ Microbiol; 2017 Aug; 19(8):3059-3069. PubMed ID: 28419704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erosion of functional independence early in the evolution of a microbial mutualism.
    Hillesland KL; Lim S; Flowers JJ; Turkarslan S; Pinel N; Zane GM; Elliott N; Qin Y; Wu L; Baliga NS; Zhou J; Wall JD; Stahl DA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14822-7. PubMed ID: 25267659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid evolution of stability and productivity at the origin of a microbial mutualism.
    Hillesland KL; Stahl DA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2124-9. PubMed ID: 20133857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic modeling of a mutualistic microbial community.
    Stolyar S; Van Dien S; Hillesland KL; Pinel N; Lie TJ; Leigh JA; Stahl DA
    Mol Syst Biol; 2007; 3():92. PubMed ID: 17353934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stable genetic polymorphism underpinning microbial syntrophy.
    Großkopf T; Zenobi S; Alston M; Folkes L; Swarbreck D; Soyer OS
    ISME J; 2016 Dec; 10(12):2844-2853. PubMed ID: 27258948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electron transfer system of syntrophically grown Desulfovibrio vulgaris.
    Walker CB; He Z; Yang ZK; Ringbauer JA; He Q; Zhou J; Voordouw G; Wall JD; Arkin AP; Hazen TC; Stolyar S; Stahl DA
    J Bacteriol; 2009 Sep; 191(18):5793-801. PubMed ID: 19581361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional responses of methanogenic archaea to syntrophic growth.
    Walker CB; Redding-Johanson AM; Baidoo EE; Rajeev L; He Z; Hendrickson EL; Joachimiak MP; Stolyar S; Arkin AP; Leigh JA; Zhou J; Keasling JD; Mukhopadhyay A; Stahl DA
    ISME J; 2012 Nov; 6(11):2045-55. PubMed ID: 22739494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of biogeographically distinct ecotypes during laboratory evolution.
    Valenzuela JJ; Immanuel SRC; Wilson J; Turkarslan S; Ruiz M; Gibbons SM; Hunt KA; Stopnisek N; Auer M; Zemla M; Stahl DA; Baliga NS
    Nat Commun; 2024 Aug; 15(1):7451. PubMed ID: 39198408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism.
    Plugge CM; Scholten JCM; Culley DE; Nie L; Brockman FJ; Zhang W
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2746-2756. PubMed ID: 20576691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris.
    Franco LC; Steinbeisser S; Zane GM; Wall JD; Fields MW
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2839-2850. PubMed ID: 29429007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O
    Schoeffler M; Gaudin AL; Ramel F; Valette O; Denis Y; Hania WB; Hirschler-Réa A; Dolla A
    Environ Microbiol; 2019 Jan; 21(1):360-373. PubMed ID: 30394641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Caffrey SM; Park HS; Voordouw JK; He Z; Zhou J; Voordouw G
    J Bacteriol; 2007 Sep; 189(17):6159-67. PubMed ID: 17601789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutualistic growth of the sulfate-reducer Desulfovibrio vulgaris Hildenborough with different carbohydrates.
    Santana MM; Portillo MC; Gonzalez JM
    Mikrobiologiia; 2012; 81(6):720-5. PubMed ID: 23610921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis.
    He Q; Huang KH; He Z; Alm EJ; Fields MW; Hazen TC; Arkin AP; Wall JD; Zhou J
    Appl Environ Microbiol; 2006 Jun; 72(6):4370-81. PubMed ID: 16751553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment.
    Dolla A; Pohorelic BK; Voordouw JK; Voordouw G
    Arch Microbiol; 2000 Sep; 174(3):143-51. PubMed ID: 11041344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth.
    Klonowska A; Clark ME; Thieman SB; Giles BJ; Wall JD; Fields MW
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1007-16. PubMed ID: 18265973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Nitrate reductase activity of Desulfovibrio vulgaris BKM 1388].
    Tarasova NB; Gorshkov OV; Petrova OE
    Mikrobiologiia; 2009; 78(2):192-6. PubMed ID: 19449731
    [No Abstract]   [Full Text] [Related]  

  • 20. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,
    Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.