These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28320847)

  • 21. L-DOPA enhances neural direction signals in younger and older adults.
    Koch C; Baeuchl C; Glöckner F; Riedel P; Petzold J; Smolka MN; Li SC; Schuck NW
    Neuroimage; 2022 Dec; 264():119670. PubMed ID: 36243268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of cognitive allocentric information in visuospatial short-term memory through the hippocampus.
    Carrozzo M; Koch G; Turriziani P; Caltagirone C; Carlesimo GA; Lacquaniti F
    Hippocampus; 2005; 15(8):1072-84. PubMed ID: 16161036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Path integration in 3D from visual motion cues: A human fMRI study.
    Indovina I; Maffei V; Mazzarella E; Sulpizio V; Galati G; Lacquaniti F
    Neuroimage; 2016 Nov; 142():512-521. PubMed ID: 27395391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different approaches to test orientation of self in space: comparison of a 2D pen-and-paper test and a 3D real-world pointing task.
    Gerb J; Brandt T; Dieterich M
    J Neurol; 2023 Feb; 270(2):642-650. PubMed ID: 36342523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe.
    Marchette SA; Vass LK; Ryan J; Epstein RA
    Nat Neurosci; 2014 Nov; 17(11):1598-606. PubMed ID: 25282616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional spatial representation in freely swimming fish.
    Burt de Perera T; Holbrook RI
    Cogn Process; 2012 Aug; 13 Suppl 1():S107-11. PubMed ID: 22915259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural Codes for One's Own Position and Direction in a Real-World "Vista" Environment.
    Sulpizio V; Boccia M; Guariglia C; Galati G
    Front Hum Neurosci; 2018; 12():167. PubMed ID: 29760655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation.
    Sherrill KR; Erdem UM; Ross RS; Brown TI; Hasselmo ME; Stern CE
    J Neurosci; 2013 Dec; 33(49):19304-13. PubMed ID: 24305826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus.
    Cooper BG; Mizumori SJ
    J Neurosci; 2001 Jun; 21(11):3986-4001. PubMed ID: 11356886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial memory for vertical locations.
    Hinterecker T; Leroy C; Kirschhock ME; Zhao M; Butz MV; Bülthoff HH; Meilinger T
    J Exp Psychol Learn Mem Cogn; 2019 Jul; 45(7):1205-1223. PubMed ID: 30047770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The place-cell representation of volumetric space in rats.
    Grieves RM; Jedidi-Ayoub S; Mishchanchuk K; Liu A; Renaudineau S; Jeffery KJ
    Nat Commun; 2020 Feb; 11(1):789. PubMed ID: 32034157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered neural odometry in the vertical dimension.
    Casali G; Bush D; Jeffery K
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4631-4636. PubMed ID: 30770450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distances between real-world locations are represented in the human hippocampus.
    Morgan LK; Macevoy SP; Aguirre GK; Epstein RA
    J Neurosci; 2011 Jan; 31(4):1238-45. PubMed ID: 21273408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The human brain uses spatial schemas to represent segmented environments.
    Peer M; Epstein RA
    Curr Biol; 2021 Nov; 31(21):4677-4688.e8. PubMed ID: 34473949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. When humans can fly: Imprecise vertical encoding in human 3D spatial navigation.
    Du YK; Mou W
    Behav Brain Res; 2022 May; 426():113835. PubMed ID: 35292332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study.
    Hao X; Huang Y; Li X; Song Y; Kong X; Wang X; Yang Z; Zhen Z; Liu J
    Brain Behav; 2016 Dec; 6(12):e00572. PubMed ID: 28031996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional cross-hemispheric shift between object-place paired associate memory and spatial memory in the human hippocampus.
    Lee CH; Ryu J; Lee SH; Kim H; Lee I
    Hippocampus; 2016 Aug; 26(8):1061-77. PubMed ID: 27009679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Hippocampus Encodes Distances in Multidimensional Feature Space.
    Theves S; Fernandez G; Doeller CF
    Curr Biol; 2019 Apr; 29(7):1226-1231.e3. PubMed ID: 30905602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-reported navigation ability is associated with optic flow-sensitive regions' functional connectivity patterns during visual path integration.
    Zajac L; Burte H; Taylor HA; Killiany R
    Brain Behav; 2019 Apr; 9(4):e01236. PubMed ID: 30884216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.