BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28320918)

  • 1. HINGE: long-read assembly achieves optimal repeat resolution.
    Kamath GM; Shomorony I; Xia F; Courtade TA; Tse DN
    Genome Res; 2017 May; 27(5):747-756. PubMed ID: 28320918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canu: scalable and accurate long-read assembly via adaptive
    Koren S; Walenz BP; Berlin K; Miller JR; Bergman NH; Phillippy AM
    Genome Res; 2017 May; 27(5):722-736. PubMed ID: 28298431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved assembly of noisy long reads by k-mer validation.
    Carvalho AB; Dupim EG; Goldstein G
    Genome Res; 2016 Dec; 26(12):1710-1720. PubMed ID: 27831497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of long, error-prone reads using repeat graphs.
    Kolmogorov M; Yuan J; Lin Y; Pevzner PA
    Nat Biotechnol; 2019 May; 37(5):540-546. PubMed ID: 30936562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and accurate de novo genome assembly from long uncorrected reads.
    Vaser R; Sović I; Nagarajan N; Šikić M
    Genome Res; 2017 May; 27(5):737-746. PubMed ID: 28100585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.
    Schneider VA; Graves-Lindsay T; Howe K; Bouk N; Chen HC; Kitts PA; Murphy TD; Pruitt KD; Thibaud-Nissen F; Albracht D; Fulton RS; Kremitzki M; Magrini V; Markovic C; McGrath S; Steinberg KM; Auger K; Chow W; Collins J; Harden G; Hubbard T; Pelan S; Simpson JT; Threadgold G; Torrance J; Wood JM; Clarke L; Koren S; Boitano M; Peluso P; Li H; Chin CS; Phillippy AM; Durbin R; Wilson RK; Flicek P; Eichler EE; Church DM
    Genome Res; 2017 May; 27(5):849-864. PubMed ID: 28396521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HySA: a Hybrid Structural variant Assembly approach using next-generation and single-molecule sequencing technologies.
    Fan X; Chaisson M; Nakhleh L; Chen K
    Genome Res; 2017 May; 27(5):793-800. PubMed ID: 28104618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo assembly of viral quasispecies using overlap graphs.
    Baaijens JA; Aabidine AZE; Rivals E; Schönhuth A
    Genome Res; 2017 May; 27(5):835-848. PubMed ID: 28396522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving de novo Assembly Based on Read Classification.
    Liao X; Li M; Luo J; Zou Y; Wu FX; Pan Y; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):177-188. PubMed ID: 30059317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.
    Chin CS; Alexander DH; Marks P; Klammer AA; Drake J; Heiner C; Clum A; Copeland A; Huddleston J; Eichler EE; Turner SW; Korlach J
    Nat Methods; 2013 Jun; 10(6):563-9. PubMed ID: 23644548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short read fragment assembly of bacterial genomes.
    Chaisson MJ; Pevzner PA
    Genome Res; 2008 Feb; 18(2):324-30. PubMed ID: 18083777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.