These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28321259)

  • 1. Evaluation of Three Devices for the Isolation of the Stromal Vascular Fraction from Adipose Tissue and for ASC Culture: A Comparative Study.
    Rodriguez J; Pratta AS; Abbassi N; Fabre H; Rodriguez F; Debard C; Adobati J; Boucher F; Mallein-Gerin F; Auxenfans C; Damour O; Mojallal A
    Stem Cells Int; 2017; 2017():9289213. PubMed ID: 28321259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno-free media.
    Agostini F; Rossi FM; Aldinucci D; Battiston M; Lombardi E; Zanolin S; Massarut S; Parodi PC; Da Ponte A; Tessitori G; Pivetta B; Durante C; Mazzucato M
    Stem Cell Res Ther; 2018 May; 9(1):130. PubMed ID: 29751821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipoaspirate Storage Time and Temperature: Effects on Stromal Vascular Fraction Quality and Cell Composition.
    Svalgaard JD; Juul S; Vester-Glovinski PV; Haastrup EK; Ballesteros OR; Lynggaard CD; Jensen AK; Fischer-Nielsen A; Herly M; Munthe-Fog L
    Cells Tissues Organs; 2020; 209(1):54-63. PubMed ID: 32580198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration.
    Nyberg E; Farris A; O'Sullivan A; Rodriguez R; Grayson W
    Tissue Eng Part A; 2019 Nov; 25(21-22):1459-1469. PubMed ID: 30734661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture.
    Haack-Sørensen M; Follin B; Juhl M; Brorsen SK; Søndergaard RH; Kastrup J; Ekblond A
    J Transl Med; 2016 Nov; 14(1):319. PubMed ID: 27852267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-fragmented and nanofat adipose tissue derivatives: In vitro qualitative and quantitative analysis.
    Cicione C; Vadalà G; Di Giacomo G; Tilotta V; Ambrosio L; Russo F; Zampogna B; Cannata F; Papalia R; Denaro V
    Front Bioeng Biotechnol; 2023; 11():911600. PubMed ID: 36733959
    [No Abstract]   [Full Text] [Related]  

  • 7. Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells.
    Gierloff M; Petersen L; Oberg HH; Quabius ES; Wiltfang J; Açil Y
    J Plast Reconstr Aesthet Surg; 2014 Oct; 67(10):1427-35. PubMed ID: 24947082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies.
    Jurgens WJ; Oedayrajsingh-Varma MJ; Helder MN; Zandiehdoulabi B; Schouten TE; Kuik DJ; Ritt MJ; van Milligen FJ
    Cell Tissue Res; 2008 Jun; 332(3):415-26. PubMed ID: 18379826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue.
    Jurgens WJ; van Dijk A; Doulabi BZ; Niessen FB; Ritt MJ; van Milligen FJ; Helder MN
    Cytotherapy; 2009; 11(8):1052-64. PubMed ID: 19929469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrocytes Cocultured with Stromal Vascular Fraction of Adipose Tissue Present More Intense Chondrogenic Characteristics Than with Adipose Stem Cells.
    Wu L; Prins HJ; Leijten J; Helder MN; Evseenko D; Moroni L; van Blitterswijk CA; Lin Y; Karperien M
    Tissue Eng Part A; 2016 Feb; 22(3-4):336-48. PubMed ID: 26732248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-toxic freezing media to retain the stem cell reserves in adipose tissues.
    Shaik S; Wu X; Gimble JM; Devireddy R
    Cryobiology; 2020 Oct; 96():137-144. PubMed ID: 32687840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the Viability and Yield of Adipose-Derived Stem Cells (ASCs) from Different Donor Areas.
    Tsekouras A; Mantas D; Tsilimigras DI; Moris D; Kontos M; Zografos GC
    In Vivo; 2017; 31(6):1229-1234. PubMed ID: 29102952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of the Stromal Vascular Fraction Using a New Protocol with All Clinical-Grade Drugs: From Basic Study to Clinical Application.
    Qin J; Cheng C; Huang RL; He J; Zhou S; Tan PC; Zhang T; Fang B; Li Q; Xie Y
    Aesthetic Plast Surg; 2024 Nov; 48(22):4702-4711. PubMed ID: 38987318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a System and Method for Automated Isolation of Stromal Vascular Fraction from Adipose Tissue Lipoaspirate.
    SundarRaj S; Deshmukh A; Priya N; Krishnan VS; Cherat M; Majumdar AS
    Stem Cells Int; 2015; 2015():109353. PubMed ID: 26167182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified nanofat grafting: Stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications.
    Girard P; Dulong J; Duisit J; Mocquard C; Le Gallou S; Chaput B; Lupon E; Watier E; Varin A; Tarte K; Bertheuil N
    Front Bioeng Biotechnol; 2022; 10():895735. PubMed ID: 36177178
    [No Abstract]   [Full Text] [Related]  

  • 16. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).
    Bourin P; Bunnell BA; Casteilla L; Dominici M; Katz AJ; March KL; Redl H; Rubin JP; Yoshimura K; Gimble JM
    Cytotherapy; 2013 Jun; 15(6):641-8. PubMed ID: 23570660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Condition of Isolation from an Adipose Tissue-Derived Stromal Vascular Fraction for the Development of Automated Systems.
    Lee SJ; Lee CR; Kim KJ; Ryu YH; Kim E; Han YN; Moon SH; Rhie JW
    Tissue Eng Regen Med; 2020 Apr; 17(2):203-208. PubMed ID: 31997256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.
    Vidal MA; Kilroy GE; Lopez MJ; Johnson JR; Moore RM; Gimble JM
    Vet Surg; 2007 Oct; 36(7):613-22. PubMed ID: 17894587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "In vitro" and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells.
    Astori G; Vignati F; Bardelli S; Tubio M; Gola M; Albertini V; Bambi F; Scali G; Castelli D; Rasini V; Soldati G; Moccetti T
    J Transl Med; 2007 Oct; 5():55. PubMed ID: 17974012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine.
    Chung MT; Zimmermann AS; Paik KJ; Morrison SD; Hyun JS; Lo DD; McArdle A; Montoro DT; Walmsley GG; Senarath-Yapa K; Sorkin M; Rennert R; Chen HH; Chung AS; Vistnes D; Gurtner GC; Longaker MT; Wan DC
    Stem Cells Transl Med; 2013 Oct; 2(10):808-17. PubMed ID: 24018794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.