These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28321408)

  • 1. Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by
    Vijayaraghavan P; Rajendran P; Prakash Vincent SG; Arun A; Abdullah Al-Dhabi N; Valan Arasu M; Young Kwon O; Kim YO
    Biomed Res Int; 2017; 2017():3909657. PubMed ID: 28321408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cow Dung Is a Novel Feedstock for Fibrinolytic Enzyme Production from Newly Isolated Bacillus sp. IND7 and Its Application in In Vitro Clot Lysis.
    Vijayaraghavan P; Arun A; Vincent SG; Arasu MV; Al-Dhabi NA
    Front Microbiol; 2016; 7():361. PubMed ID: 27065952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-prospecting of cuttle fish waste and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation.
    Biji GD; Arun A; Muthulakshmi E; Vijayaraghavan P; Arasu MV; Al-Dhabi NA
    3 Biotech; 2016 Dec; 6(2):231. PubMed ID: 28330303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical optimization of fibrinolytic enzyme production by Pseudoalteromonas sp. IND11 using cow dung substrate by response surface methodology.
    Vijayaraghavan P; Vincent SG
    Springerplus; 2014; 3():60. PubMed ID: 24516788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18.
    Vijayaraghavan P; Prakash Vincent SG; Dhillon GS
    Waste Manag; 2016 Feb; 48():513-520. PubMed ID: 26459187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of fibrinolytic enzyme by a new X
    Vijayaraghavan P; Arasu MV; Anantha Rajan R; Al-Dhabi NA
    Saudi J Biol Sci; 2019 Feb; 26(2):217-224. PubMed ID: 31485157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp. strain AS-S20-I.
    Mukherjee AK; Rai SK
    N Biotechnol; 2011 Feb; 28(2):182-9. PubMed ID: 21078421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.
    Singh S; Bajaj BK
    Prep Biochem Biotechnol; 2016 Oct; 46(7):717-24. PubMed ID: 26760481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green gram husk--an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation.
    Prakasham RS; Rao ChS; Sarma PN
    Bioresour Technol; 2006 Sep; 97(13):1449-54. PubMed ID: 16140528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium optimization for the production of fibrinolytic enzyme by Paenibacillus sp. IND8 using response surface methodology.
    Vijayaraghavan P; Prakash Vincent SG
    ScientificWorldJournal; 2014; 2014():276942. PubMed ID: 24523635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production & purification of a fibrinolytic enzyme (thrombinase) from Bacillus sphaericus.
    Balaraman K; Prabakaran G
    Indian J Med Res; 2007 Nov; 126(5):459-64. PubMed ID: 18160751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp.
    Adinarayana K; Ellaiah P
    J Pharm Pharm Sci; 2002; 5(3):272-8. PubMed ID: 12553896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization.
    Agrebi R; Haddar A; Hajji M; Frikha F; Manni L; Jellouli K; Nasri M
    Can J Microbiol; 2009 Sep; 55(9):1049-61. PubMed ID: 19898547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of milk-clotting protease from Bacillus subtilis.
    Dutt K; Gupta P; Saran S; Misra S; Saxena RK
    Appl Biochem Biotechnol; 2009 Sep; 158(3):761-72. PubMed ID: 19172237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium,
    Vijayaraghavan P; Prakash Vincent SG
    Biotechnol Rep (Amst); 2015 Sep; 7():135-142. PubMed ID: 28626723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fibrinolytic activity of Bacillus mesentericus strains].
    Imshenetskiĭ AA; Kasatkina ID; Cherkesova GV; Lebedeva IM
    Mikrobiologiia; 1986; 55(2):217-22. PubMed ID: 3523167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation.
    Vijayaraghavan P; Arun A; Al-Dhabi NA; Vincent SG; Arasu MV; Choi KC
    Biotechnol Biofuels; 2016; 9():73. PubMed ID: 27011767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical optimization of fibrinolytic enzyme production using agroresidues by Bacillus cereus IND1 and its thrombolytic activity in vitro.
    Vijayaraghavan P; Vincent SG
    Biomed Res Int; 2014; 2014():725064. PubMed ID: 25003130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated process production and extraction of the fibrinolytic protease from Bacillus sp. UFPEDA 485.
    Sales AE; de Souza FA; Teixeira JA; Porto TS; Porto AL
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1676-88. PubMed ID: 23716141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose.
    Wu R; Chen G; Pan S; Zeng J; Liang Z
    Sci Rep; 2019 May; 9(1):6824. PubMed ID: 31048760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.