These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28321451)

  • 1. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes.
    Bersellini M; Roelfes G
    Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold.
    Bos J; Browne WR; Driessen AJ; Roelfes G
    J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Metalloenzymes based on TetR Proteins and Cu(II) for Enantioselective Friedel-Crafts Alkylation Reactions.
    Gutiérrez de Souza C; Bersellini M; Roelfes G
    ChemCatChem; 2020 Jun; 12(12):3190-3194. PubMed ID: 32612714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes.
    Drienovská I; Scheele RA; Gutiérrez de Souza C; Roelfes G
    Chembiochem; 2020 Nov; 21(21):3077-3081. PubMed ID: 32585070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial metalloenzymes constructed from hierarchically-assembled proteins.
    Ueno T; Tabe H; Tanaka Y
    Chem Asian J; 2013 Aug; 8(8):1646-60. PubMed ID: 23704077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*.
    Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs).
    Zhang S; Zhao Y
    Chem Commun (Camb); 2012 Oct; 48(80):9998-10000. PubMed ID: 22935642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel artificial metalloenzymes by
    Drienovská I; Rioz-Martínez A; Draksharapu A; Roelfes G
    Chem Sci; 2015 Jan; 6(1):770-776. PubMed ID: 28936318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes.
    Jarvis AG; Obrecht L; Deuss PJ; Laan W; Gibson EK; Wells PP; Kamer PCJ
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13596-13600. PubMed ID: 28841767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metatheases: artificial metalloproteins for olefin metathesis.
    Sauer DF; Gotzen S; Okuda J
    Org Biomol Chem; 2016 Oct; 14(39):9174-9183. PubMed ID: 27545851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid.
    Drienovská I; Alonso-Cotchico L; Vidossich P; Lledós A; Maréchal JD; Roelfes G
    Chem Sci; 2017 Oct; 8(10):7228-7235. PubMed ID: 29081955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking the therapeutic potential of artificial metalloenzymes.
    Tanaka K; Vong K
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(3):79-94. PubMed ID: 32161212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimochrome, a metalloporphyrin-based catalytic Swiss knife†.
    Leone L; Chino M; Nastri F; Maglio O; Pavone V; Lombardi A
    Biotechnol Appl Biochem; 2020 Jul; 67(4):495-515. PubMed ID: 32658365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Selective Sulfide Oxidation Catalyzed by Heterogeneous Artificial Metalloenzymes Iron@NikA.
    Lopez S; Marchi-Delapierre C; Cavazza C; Ménage S
    Chemistry; 2020 Dec; 26(70):16633-16638. PubMed ID: 33079395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water.
    Wang C; Hao M; Qi Q; Dang J; Dong X; Lv S; Xiong L; Gao H; Jia G; Chen Y; Hartig JS; Li C
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3444-3449. PubMed ID: 31825550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem Friedel-Crafts-Alkylation-Enantioselective-Protonation by Artificial Enzyme Iminium Catalysis.
    Leveson-Gower RB; de Boer RM; Roelfes G
    ChemCatChem; 2022 Apr; 14(8):e202101875. PubMed ID: 35915643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.