BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 28321489)

  • 1. MicroRNA regulation and analytical methods in cancer cell metabolism.
    Zhang LF; Jiang S; Liu MF
    Cell Mol Life Sci; 2017 Aug; 74(16):2929-2941. PubMed ID: 28321489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting cellular metabolism to improve cancer therapeutics.
    Zhao Y; Butler EB; Tan M
    Cell Death Dis; 2013 Mar; 4(3):e532. PubMed ID: 23470539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pivotal role of MicroRNAs in glucose metabolism in cancer.
    Taefehshokr S; Taefehshokr N; Hemmat N; Hajazimian S; Isazadeh A; Dadebighlu P; Baradaran B
    Pathol Res Pract; 2021 Jan; 217():153314. PubMed ID: 33341548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylation control of metabolic enzymes in cancer: an updated version.
    Huang W; Wang Z; Lei QY
    Acta Biochim Biophys Sin (Shanghai); 2014 Mar; 46(3):204-13. PubMed ID: 24480802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis.
    Arundhathi JRD; Mathur SR; Gogia A; Deo SVS; Mohapatra P; Prasad CP
    Mol Biol Rep; 2021 May; 48(5):4733-4745. PubMed ID: 34047880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent metabolic dysregulation in cancer and Alzheimer's disease.
    Harris RA; Tindale L; Cumming RC
    Biogerontology; 2014 Dec; 15(6):559-77. PubMed ID: 25305052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic role of glycolysis for cancer outcome: evidence from 86 studies.
    Yu M; Chen S; Hong W; Gu Y; Huang B; Lin Y; Zhou Y; Jin H; Deng Y; Tu L; Hou B; Jian Z
    J Cancer Res Clin Oncol; 2019 Apr; 145(4):967-999. PubMed ID: 30825027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells.
    Fukushi A; Kim HD; Chang YC; Kim CH
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents.
    Sheng H; Tang W
    Recent Pat Anticancer Drug Discov; 2016; 11(3):297-308. PubMed ID: 27087655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents.
    Zhou Y; Guo Y; Tam KY
    Expert Opin Ther Pat; 2022 Apr; 32(4):441-453. PubMed ID: 35001793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Omega-3 polyunsaturated fatty acid promotes the inhibition of glycolytic enzymes and mTOR signaling by regulating the tumor suppressor LKB1.
    Andrade-Vieira R; Han JH; Marignani PA
    Cancer Biol Ther; 2013 Nov; 14(11):1050-8. PubMed ID: 24025358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation-associated silencing of miR-9-1 promotes nasopharyngeal carcinoma progression and glycolysis via HK2.
    Xu QL; Luo Z; Zhang B; Qin GJ; Zhang RY; Kong XY; Tang HY; Jiang W
    Cancer Sci; 2021 Oct; 112(10):4127-4138. PubMed ID: 34382305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment.
    Cassim S; Raymond VA; Dehbidi-Assadzadeh L; Lapierre P; Bilodeau M
    Cell Cycle; 2018; 17(7):903-916. PubMed ID: 29633904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-elemene suppresses Warburg effect in NCI-H1650 non-small-cell lung cancer cells by regulating the miR-301a-3p/AMPKα axis.
    Li L; Zhao D; Cheng G; Li Q; Chu Y; Chu H; Ding Y; Li C
    Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32463461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy.
    Alkhathami AG; Sahib AS; Al Fayi MS; Fadhil AA; Jawad MA; Shafik SA; Sultan SJ; Almulla AF; Shen M
    Environ Res; 2023 Oct; 234():116007. PubMed ID: 37119844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer.
    Wang J; Wang H; Liu A; Fang C; Hao J; Wang Z
    Oncotarget; 2015 Aug; 6(23):19456-68. PubMed ID: 26062441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
    Prigione A; Rohwer N; Hoffmann S; Mlody B; Drews K; Bukowiecki R; Blümlein K; Wanker EE; Ralser M; Cramer T; Adjaye J
    Stem Cells; 2014 Feb; 32(2):364-76. PubMed ID: 24123565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-coding RNAs in the reprogramming of glucose metabolism in cancer.
    Shankaraiah RC; Veronese A; Sabbioni S; Negrini M
    Cancer Lett; 2018 Apr; 419():167-174. PubMed ID: 29366802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.