These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 28321527)
21. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Abdelkefi-Mesrati L; Boukedi H; Dammak-Karray M; Sellami-Boudawara T; Jaoua S; Tounsi S J Invertebr Pathol; 2011 Feb; 106(2):250-4. PubMed ID: 20965198 [TBL] [Abstract][Full Text] [Related]
22. Improvement of Vip3Aa16 Toxin Production and Efficiency Through Nitrous Acid and UV Mutagenesis of Bacillus thuringiensis (Bacillales: Bacillaceae). Hmani M; Boukedi H; Ben Khedher S; Elleuch A; Tounsi S; Abdelkefi-Mesrati L J Econ Entomol; 2018 Feb; 111(1):108-111. PubMed ID: 29267888 [TBL] [Abstract][Full Text] [Related]
23. [Effects of helper protein P20 from Bacillus thuringiensis on Vip3A expression]. Shi YX; Yuan MJ; Chen JW; Sun F; Pang Y Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):85-9. PubMed ID: 16579471 [TBL] [Abstract][Full Text] [Related]
24. Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin. Yamagiwa M; Sakagawa K; Sakai H Biosci Biotechnol Biochem; 2004 Mar; 68(3):523-8. PubMed ID: 15056882 [TBL] [Abstract][Full Text] [Related]
25. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Fang J; Xu X; Wang P; Zhao JZ; Shelton AM; Cheng J; Feng MG; Shen Z Appl Environ Microbiol; 2007 Feb; 73(3):956-61. PubMed ID: 17122403 [TBL] [Abstract][Full Text] [Related]
26. Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity. Jiang K; Chen Z; Zang Y; Shi Y; Shang C; Jiao X; Cai J; Gao X J Biol Chem; 2023 Mar; 299(3):103000. PubMed ID: 36764522 [TBL] [Abstract][Full Text] [Related]
27. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Rajamohan F; Lee MK; Dean DH Prog Nucleic Acid Res Mol Biol; 1998; 60():1-27. PubMed ID: 9594569 [TBL] [Abstract][Full Text] [Related]
28. The human cancer cell active toxin Cry41Aa from Krishnan V; Domanska B; Elhigazi A; Afolabi F; West MJ; Crickmore N Biochem J; 2017 Apr; 474(10):1591-1602. PubMed ID: 28341807 [TBL] [Abstract][Full Text] [Related]
29. A deletion mutant ndv200 of the Bacillus thuringiensis vip3BR insecticidal toxin gene is a prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insect damage. Gayen S; Samanta MK; Hossain MA; Mandal CC; Sen SK Planta; 2015 Jul; 242(1):269-81. PubMed ID: 25912191 [TBL] [Abstract][Full Text] [Related]
30. Purification and characterization of Bacillus thuringiensis vegetative insecticidal toxin protein(s). Osman G; Assaeedi A; Osman Y; El-Ghareeb D; Alreedy R Lett Appl Microbiol; 2013 Oct; 57(4):310-6. PubMed ID: 23815791 [TBL] [Abstract][Full Text] [Related]
31. Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease. Zhang J; Pan ZZ; Xu L; Liu B; Chen Z; Li J; Niu LY; Zhu YJ; Chen QX Int J Biol Macromol; 2018 Feb; 107(Pt A):1220-1226. PubMed ID: 28970168 [TBL] [Abstract][Full Text] [Related]
32. Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. Ni H; Zeng S; Qin X; Sun X; Zhang S; Zhao X; Yu Z; Li L Int J Biol Sci; 2015; 11(3):304-15. PubMed ID: 25678849 [TBL] [Abstract][Full Text] [Related]
33. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Estruch JJ; Warren GW; Mullins MA; Nye GJ; Craig JA; Koziel MG Proc Natl Acad Sci U S A; 1996 May; 93(11):5389-94. PubMed ID: 8643585 [TBL] [Abstract][Full Text] [Related]
34. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690 [TBL] [Abstract][Full Text] [Related]
35. [Identification and cloning of vip3A genes from isolates of Bacillus thuringiensis and their bioactivity analysis]. Shen J; Hou M; Guo W Wei Sheng Wu Xue Bao; 2009 Jan; 49(1):110-6. PubMed ID: 19388273 [TBL] [Abstract][Full Text] [Related]
36. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
37. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis--a minireview. Dean DH; Rajamohan F; Lee MK; Wu SJ; Chen XJ; Alcantara E; Hussain SR Gene; 1996 Nov; 179(1):111-7. PubMed ID: 8955636 [TBL] [Abstract][Full Text] [Related]
38. Insecticidal activity and processing in larval gut juices of genetically engineered 130-kDa proteins of Bacillus thuringiensis subsp. aizawai. Nakamura K; Murai-Nishioka R; Shimizu M; Oshie K; Mikitani K; Oeda K; Ohkawa H Biosci Biotechnol Biochem; 1992 Jan; 56(1):1-7. PubMed ID: 1368122 [TBL] [Abstract][Full Text] [Related]
39. Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. Banyuls N; Quan Y; González-Martínez RM; Hernández-Martínez P; Ferré J J Invertebr Pathol; 2021 Nov; 186():107439. PubMed ID: 32663546 [TBL] [Abstract][Full Text] [Related]
40. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Portugal L; Gringorten JL; Caputo GF; Soberón M; Muñoz-Garay C; Bravo A Peptides; 2014 Mar; 53():292-9. PubMed ID: 24189038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]