These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28321659)
1. Sugar uptake by the dermal transfer cells of developing cotyledons of Vicia faba L. : Mechanism of energy coupling. McDonald R; Fieuw S; Patrick JW Planta; 1996 Apr; 198(4):502-509. PubMed ID: 28321659 [TBL] [Abstract][Full Text] [Related]
2. Hexose uptake by developing cotyledons of Vicia faba: physiological evidence for transporters of differing affinities and specificities. Harrington GN; Dibley KE; Ritchie RJ; Offler CE; Patrick JW Funct Plant Biol; 2005 Nov; 32(11):987-995. PubMed ID: 32689194 [TBL] [Abstract][Full Text] [Related]
3. Proton Fluxes Associated with Sugar Uptake in Vicia faba Leaf Tissues. Delrot S Plant Physiol; 1981 Sep; 68(3):706-11. PubMed ID: 16661984 [TBL] [Abstract][Full Text] [Related]
4. Sugar uptake and proton release by protoplasts from the infected zone of Vicia faba L. nodules: evidence against apoplastic sugar supply of infected cells. Peiter E; Schubert S J Exp Bot; 2003 Jul; 54(388):1691-700. PubMed ID: 12773525 [TBL] [Abstract][Full Text] [Related]
5. Sugar retrieval by coats of developing seeds of Phaseolus vulgaris L. and Vicia faba L. Ritchie RJ; Fieuw-Makaroff S; Patrick JW Plant Cell Physiol; 2003 Feb; 44(2):163-72. PubMed ID: 12610219 [TBL] [Abstract][Full Text] [Related]
6. Role of sugars in regulating transfer cell development in cotyledons of developing Vicia faba seeds. Wardini T; Talbot MJ; Offler CE; Patrick JW Protoplasma; 2007; 230(1-2):75-88. PubMed ID: 17111097 [TBL] [Abstract][Full Text] [Related]
7. Sucrose transport into developing seeds of Pisum sativum L. Tegeder M; Wang XD; Frommer WB; Offler CE; Patrick JW Plant J; 1999 Apr; 18(2):151-61. PubMed ID: 10363367 [TBL] [Abstract][Full Text] [Related]
8. Induction of wall ingrowths of transfer cells occurs rapidly and depends upon gene expression in cotyledons of developing Vicia faba seeds. Wardini T; Wang XD; Offler CE; Patrick JW Protoplasma; 2007; 231(1-2):15-23. PubMed ID: 17602275 [TBL] [Abstract][Full Text] [Related]
9. Energetics of threonine uptake by pod wall tissues of Vicia faba L. Mounoury G; Delrot S; Bonnemain JL Planta; 1984 May; 161(2):178-85. PubMed ID: 24253607 [TBL] [Abstract][Full Text] [Related]
10. Energetics of sucrose transport into protoplasts from developing soybean cotyledons. Lin W Plant Physiol; 1985 May; 78(1):41-5. PubMed ID: 16664205 [TBL] [Abstract][Full Text] [Related]
11. Linear sucrose transport in protoplasts from developing soybean cotyledons. Lin W Plant Physiol; 1985 Jul; 78(3):649-51. PubMed ID: 16664300 [TBL] [Abstract][Full Text] [Related]
12. Evidence for proton motive force dependent transport of selenite by Clostridium pasteurianum. Bryant RD; Laishley EJ Can J Microbiol; 1989 Apr; 35(4):481-6. PubMed ID: 2743219 [TBL] [Abstract][Full Text] [Related]
13. Expression patterns and subcellular localization of a 52 kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development. Hei U; Wang Q; Kurz T; Borisjuk L; Golombek S; Neubohn B; Adler K; Gahrtz M; Sauer N; Weber H; Wob U Plant Mol Biol; 2001 Nov; 47(4):461-74. PubMed ID: 11669572 [TBL] [Abstract][Full Text] [Related]
14. Immunolocalization of the Plasma Membrane H+ -ATPase in Minor Veins of Vicia faba in Relation to Phloem Loading. Bouche-Pillon S; Fleurat-Lessard P; Fromont JC; Serrano R; Bonnemain JL Plant Physiol; 1994 Jun; 105(2):691-697. PubMed ID: 12232236 [TBL] [Abstract][Full Text] [Related]
15. The effect of vanadate on proton-sucrose cotransport in ricinus cotyledons. Vreugdenhil D; Spanswick RM Plant Physiol; 1987 Jul; 84(3):605-8. PubMed ID: 16665488 [TBL] [Abstract][Full Text] [Related]
16. Characterization of solute transport in plasma membrane vesicles isolated from cotyledons ofRicinus communis L. : II. Evidence for a proton-coupled mechanism for sucrose and amino acid uptake. Williams LE; Nelson SJ; Hall JL Planta; 1990 Nov; 182(4):540-5. PubMed ID: 24197374 [TBL] [Abstract][Full Text] [Related]
17. Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons. Zhang HM; Wheeler S; Xia X; Radchuk R; Weber H; Offler CE; Patrick JW BMC Plant Biol; 2015 Apr; 15():103. PubMed ID: 25887034 [TBL] [Abstract][Full Text] [Related]
18. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536 [TBL] [Abstract][Full Text] [Related]
19. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms. Keevil CW; Williamson MI; Marsh PD; Ellwood DC Arch Oral Biol; 1984; 29(11):871-8. PubMed ID: 6097204 [TBL] [Abstract][Full Text] [Related]
20. Characterization of solute/proton cotransport in plasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues. Williams LE; Nelson SJ; Hall JL Planta; 1992 Mar; 186(4):541-50. PubMed ID: 24186784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]