BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2832192)

  • 1. Potentiation of the glycogenolytic and haemodynamic actions of adenosine in the perfused rat liver by verapamil.
    Buxton DB
    Eur J Pharmacol; 1988 Jan; 146(1):121-7. PubMed ID: 2832192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by calcium channel blockers of the glycogenolytic effect of glucagon in perfused rat liver.
    Kimura S; Matsumoto T; Tada R; Ogata E; Abe K
    Acta Endocrinol (Copenh); 1982 Apr; 99(4):559-66. PubMed ID: 6280434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of glycogenolysis and vasoconstriction by adenosine and adenosine analogues in the perfused rat liver.
    Buxton DB; Fisher RA; Robertson SM; Olson MS
    Biochem J; 1987 Nov; 248(1):35-41. PubMed ID: 2829826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet-activating factor-mediated vasoconstriction and glycogenolysis in the perfused rat liver.
    Buxton DB; Fisher RA; Hanahan DJ; Olson MS
    J Biol Chem; 1986 Jan; 261(2):644-9. PubMed ID: 3001074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatocyte heterogeneity in response to extracellular adenosine.
    Morimoto Y; Wettstein M; Häussinger D
    Biochem J; 1993 Jul; 293 ( Pt 2)(Pt 2):573-81. PubMed ID: 8393665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of glycogenolysis by the reduction in the extracellular calcium concentration in verapamil-perfused rat liver.
    Koide Y; Kimura S; Tada R; Kugai N; Yamashita K
    Biochem Pharmacol; 1983 Feb; 32(3):517-22. PubMed ID: 6303349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycogenolytic and haemodynamic responses to heat-aggregated immunoglobulin G and prostaglandin E2 in the perfused rat liver.
    Buxton DB; Fisher RA; Briseno DL; Hanahan DJ; Olson MS
    Biochem J; 1987 Apr; 243(2):493-8. PubMed ID: 2820382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in the mechanism of action of alpha-adrenergic agonists and vasopressin or angiotensin II in stimulating hepatic glycogenolysis; a role of extracellular calcium concentration.
    Koide Y; Kimura S; Kugai N; Demura N; Yamashita K
    Endocrinol Jpn; 1985 Feb; 32(1):103-12. PubMed ID: 4017969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of glycogenolysis by adenine nucleotides in the perfused rat liver.
    Buxton DB; Robertson SM; Olson MS
    Biochem J; 1986 Aug; 237(3):773-80. PubMed ID: 3026332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P2-purinergic control of liver glycogenolysis.
    Keppens S; De Wulf H
    Biochem J; 1985 Nov; 231(3):797-99. PubMed ID: 3000360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of basal hepatic glycogenolysis by nitric oxide.
    Borgs M; Bollen M; Keppens S; Yap SH; Stalmans W; Vanstapel F
    Hepatology; 1996 Jun; 23(6):1564-71. PubMed ID: 8675178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of extracellular calcium in the metabolic and hemodynamic actions of sympathetic nerve stimulation, noradrenaline and prostaglandin F2 alpha in perfused rat liver. Differential inhibition by nifedipine and verapamil.
    Athari A; Jungermann K
    Biochem Int; 1990; 20(1):13-23. PubMed ID: 2328018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calcium antagonists on insulin-mediated glucose metabolism in skeletal muscle.
    Foot EA; Leighton B
    Diabetes; 1994 Jan; 43(1):73-9. PubMed ID: 8262320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of verapamil on glycogenolysis and gluconeogenesis in the perfused rat liver.
    Badr M
    J Biochem Toxicol; 1989; 4(1):35-7. PubMed ID: 2769695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of glycogenolysis and vasoconstriction in the perfused rat liver by the thromboxane A2 analogue U-46619.
    Fisher RA; Robertson SM; Olson MS
    J Biol Chem; 1987 Apr; 262(10):4631-8. PubMed ID: 3558359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of thromboxane release by extracellular UTP and ATP from perfused rat liver. Role of icosanoids in mediating the nucleotide responses.
    Häussinger D; Busshardt E; Stehle T; Stoll B; Wettstein M; Gerok W
    Eur J Biochem; 1988 Dec; 178(1):249-56. PubMed ID: 2849542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in Ca2+ entry blockers revealed by effects on adenosine- and adrenergic- receptors and cyclic AMP levels of [2-3H]adenine-prelabeled vesicles prepared from guinea pig brain.
    Psychoyos S; Bax M; Atkins C
    Biochem Pharmacol; 1986 May; 35(10):1639-46. PubMed ID: 3011009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disparate effects of the calcium-channel blockers, nifedipine and verapamil, on alpha 2-adrenergic receptors and thromboxane A2-induced aggregation of human platelets.
    Johnson GJ; Leis LA; Francis GS
    Circulation; 1986 Apr; 73(4):847-54. PubMed ID: 3004784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nifedipine and nicardipine potentiate glucagon-stimulated glycogenolysis in primary cultures of rat hepatocytes.
    Ogihara M
    Biol Pharm Bull; 1993 Sep; 16(9):843-6. PubMed ID: 7505685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of hepatic glycogenolysis by 12-O-tetradecanoylphorbol-13-acetate (TPA) via a calcium requiring process.
    Kimura S; Nagasaki K; Adachi I; Yamaguchi K; Fujiki H; Abe K
    Biochem Biophys Res Commun; 1984 Aug; 122(3):1057-64. PubMed ID: 6089774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.